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A. Technical Details on Implementation
Our network adopts an encoder-decoder structure, which

we implemented using PyTorch [10]. To encode the input
point cloud, we utilize the PCN architecture [19] which
is a common choice for point cloud encoding [16, 3].
This encoder consists of two shared multi-layer perceptrons
(MLPs) and two pointwise max-pooling layers, which are
widely used in point cloud analysis [11, 13, 12, 15]. The
input is represented as an M × 3 matrix, where each row
represents a point in 3D space with (x, y, z) coordinates.
The number of points M can vary across inputs.

The encoder uses a shared MLP to transform each point
pi into a feature vector fi. The MLP consists of two linear
layers with ReLU activation [1]. Next, we apply a point-
wise max-pooling to the features {fi}Mi=1, which produces
a global feature vector f ′

g ∈ R256. We then concatenate f ′
g

with each individual feature fi and pass the resulting vectors
through a second MLP and pooling layer. This process pro-
duces the final feature vector f ∈ R1024, which encodes the
input point cloud. Our decoder is an MLP that consists of
two hidden layers with 2048 hidden dimensions, followed
by ReLU activation. The last linear layer outputs a vector
Pp ∈ R6144, for which we then reshape as a 2048×3 matrix
to represent a point cloud.

We train our network using the AdamW [8] optimizer.
Moreover, we set the initial learning rate to r = 10−3 and
decay it by a factor of 0.9 every 20 epochs, with a minimum
learning rate of 0.02×r. We use a batch size of 32 and train
our model for each category of the datasets, which takes an
average of 8 hours on a Nvidia RTX 3090 GPU.

B. Dataset Details
We use the 3D-EPN [5] and PCN [19] datasets for syn-

thetic evaluation, which are derived from ShapeNet [2]. We
also utilize the ScanNet [4] dataset collected from the ac-
tual world for real-world evaluation. The details about each
dataset are as below:

3D-EPN Dataset. The 3D-EPN dataset [5] is commonly
used for evaluating unpaired point cloud completion meth-
ods. It includes 35,831 objects from eight diverse cate-

gories. Partial point clouds in the dataset contain 2048
points and were generated by transforming 2.5D depth maps
into 3D coordinates given eight fixed camera poses. Ground
truth complete point clouds were obtained by uniformly
sampling 2048 points from the object surfaces.
PCN Dataset. The PCN dataset, introduced by Yuan et
al. [19], is commonly used for evaluating supervised point
cloud completion methods. It contains eight categories in-
cluding 28,974 objects in the training set, 800 objects in the
validation set, and 1200 objects in the test set. The complete
point clouds are generated by uniformly sampling 16,384
points from CAD models, and the partial point clouds are
obtained by back-projecting depth images from eight view-
points into 3D space. Each partial sample originally con-
tains an average of 1051 points. To ensure consistency
across samples with varying point counts, we follow the
common practice [18, 19, 3, 14] of padding the data with
zeros to yield partial samples with 2048 points during train-
ing.
ScanNet Dataset. The ScanNet [4] dataset is a benchmark
for large-scale 3D indoor scene understanding. It contains
2.5 million 3D scans of real-world indoor spaces captured
by RGB-D cameras. Bounding-box annotations are used to
identify chair and table objects with unknown incomplete-
ness. We collect 4357 chair scans 1271 table scans for the
training set, while the validation set contains 1368 chairs
and 350 tables. Objects have 869 points on average. Unlike
synthetic datasets where both object orientation and posi-
tion are aligned, we only align the positions of the objects
extracted from the ScanNet dataset, creating a more chal-
lenging scenario.

C. Evaluation Metric Details

We introduce detailed evaluation metrics including
Chamfer Distance, Unidirectional Chamfer Distance, Uni-
directional Hausdorff Distance, and Minimal Matching Dis-
tance.

Chamfer Distance (CD) [19] is a popular metric used to
measure the similarity between two sets of points. The CD-
ℓ2 between two sets of points S1 and S2 can be expressed



Table 1. MMD ↓ (×103) improvement of P2C compared with the
baseline.

Method Chair Table

Baseline 28.2 25.7
P2C(Ours) 14.1 8.1

as:

CD(S1, S2)

=
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2 +
1

|S2|
∑
y∈S2

min
x∈S1

∥x− y∥2

(1)

where ∥·∥2 denotes ℓ2-norm.
Unidirectional Chamfer Distance (UCD) [16] is a variant

of Chamfer Distance that only considers the unidirectional
distance from each point in one set to its nearest point in the
other set. Therefore, it measures the similarity of one set of
points to another, but not the other way around. Mathemat-
ically, the UCD from set S1 to set S2 can be expressed as:

UCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2 (2)

Unidirectional Hausdorff Distance (UHD) [7] is another
popular metric used to measure the similarity between two
sets of points. It represents the maximum distance from
each point in one set to its nearest point in the other set.
The UHD from set S1 to set S2 can be expressed as:

UHD(S1, S2) = max
x∈S1

min
y∈S2

∥x− y∥2 (3)

Minimal Matching Distance (MMD) is a metric that is
closely related to CD. It measures the minimum distance
between one set S1 and a set S2 in a collection C. Specif-
ically, we follow the common practice [18] and uses the
ShapeNet [2] as the collection C, where the chair category
and the table category both have 5750 complete samples.
The MMD is defined as:

MMD(S1, C) = min
S2∈C

CD(S1, S2) (4)

We employ CD as the evaluation metric for synthetic
datasets because ground truth shapes are available, whereas
for real-world datasets where ground truth completions are
unavailable, we use UCD, UHD, MMD, and our proposed
RCD. The UCD, UHD, and RCD measures the preservation
of observed regions in the prediction, and MMD measures
the completeness of the prediction.

D. More Real-World Results
We present additional samples from the ScanNet dataset

in Fig. 1, where we also include the corresponding MMD

scores for each prediction. Our proposed P2C method con-
sistently generates superior visual results compared to mod-
els that are pre-trained on the ShapeNet dataset. Specifi-
cally, our approach yields shapes that better preserve the ob-
served regions while simultaneously recovering the missing
parts. For example, as illustrated in Fig. 1 (e), our method
successfully recovers the legs of the chair, while in Fig. 1
(g), it fills the empty part on the top of the table.

It is worth noting that, although the visual result is im-
pressive, the MMD score of our method is not leading
due to the domain gap between real-world and synthetic
data. Specifically, we test on real-world data and do not
have training data other than being self-supervised on the
ScanNet examples. Since MMD employs ShapeNet as the
complete sample collection, our method has a domain gap,
whereas, the other methods are trained on ShapeNet-derived
datasets, and so they are better suited for predicting point
clouds that resemble ShapeNet shapes, leading to smaller
MMD scores. Consider Fig. 1 (a), our method produces a
shape that is largely consistent with the input point cloud,
while the PCN prediction has little distinction between pos-
sible a back-rest and arm-rests, yet has the best MMD score.
This shows that MMD might be misleading when a domain
gap exists and there is a trade-off between MMD score and
prediction quality.

Overall, the MMD score of a prediction indicates com-
pleteness, but not necessarily correctness or validity of the
shape. To establish a baseline, we provide an additional re-
sult in Tab 1, which shows the average MMD for ScanNet
objects. Our method improved the baseline MMD by 14.1
and 17.6 for chair and table, respectively. Furthermore, our
P2C approach significantly outperforms other methods in
terms of fidelity metrics, as presented in Tab. ?? of the main
paper, indicating that our method can complete partial ob-
jects while preserving observed regions.

E. More Qualitative Results on 3D-EPN

Fig. 2 and Fig. 3 show more qualitative results produced
by P2C on 3D-EPN, further demonstrating the effectiveness
of our method in completing semantically missing parts.
For instance, our P2C approach is capable of recovering
finer details in the tail of the airplane (Fig. 2 (b)) and pre-
serving more observed structures in the sofa (Fig. 3 (l)) sam-
ple.

F. Hyperparameter Selection

We conduct an empirical study to investigate the impact
of hyperparameters. In particular, we examine the effect of
the number of patches on the model’s performance, which is
presented in Tab. 2. This parameter controls the granularity
of the patches, and we evaluate three cases using 32, 64, and
128 patches, respectively. The experiments are based on
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MMD=17.7 MMD=7.8 MMD=7.3 MMD=17.5 MMD=11.8 MMD=17.5

MMD=19.4 MMD=9.1 MMD=7.0 MMD=7.4 MMD=13.4 MMD=15.8

MMD=32.9 MMD=6.3 MMD=6.9 MMD=10.8 MMD=18.6 MMD=22.9

MMD=26.1 MMD=5.6 MMD=5.4 MMD=8.4 MMD=13.4 MMD=13.7

MMD=24.6 MMD=11.8 MMD=10.4 MMD=6.0 MMD=16.0 MMD=26.0

MMD=26.2 MMD=5.8 MMD=6.9 MMD=8.7 MMD=14.5 MMD=16.4

Figure 1. More qualitative results on the ScanNet dataset with MMD ↓ (×103) for each sample. The best MMD among predictions for
each object is marked red.

the model variant using only RCD-based reconstruction and
completion losses. The local patches is set to contain 64,
32, and 16 points for the respective divisions. Our results
demonstrate that using 64 patches leads to the best overall

performance.

Additionally, we investigated the effect of patch ratios
(r1 : r2), where r1 corresponds to Grec and r2 to Gcom.
For this study, we set the number of patches to 64 and
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Figure 2. More qualitative results on the 3D-EPN dataset.
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Figure 3. More qualitative results on the 3D-EPN dataset. (Continued)

train our P2C with different ratios. The results, presented
in Tab. 3, illustrate a trade-off between reconstruction and
completion patches. Selecting more patches for Grec allows
the model to observe more patches for shape representation.
However, too many reconstruction patches leads to insuffi-
cient regions to learn what to complete, which restricts the
completion capability of our method. This is demonstrated
when the ratio is set as 40:20 or 50:10. On the other hand,
if too many patches are selected for completion, i.e., unob-
servable regions, the model may not have sufficient regions
to learn the underlying complete object, leading to a perfor-
mance decrease. Our empirical findings indicate that setting
the ratio as 20:40 yields the best performance.

G. Complexity and Efficiency Analysis

We provide a detailed complexity and efficiency analysis
of our method in Tab. 4. Specifically, we report the number
of parameters and frames per second (fps) for our method
and six other methods, as well as the average CD-ℓ2 as a ref-

Table 2. The effect of different number of patches for model per-
formance in CD-ℓ2 ↓ scaled by 104.

# Patch Average Plane Car Chair Table

32 15.3 4.8 15.7 16.9 23.6
64 13.5 4.7 14.2 14.4 20.8
128 14.4 4.6 16.3 15.7 21.0

Table 3. The effect of different ratio of patches for model perfor-
mance in CD-ℓ2 ↓ scaled by 104.

Ratio Average Plane Car Chair Table

10:50 14.1 4.1 14.9 15.7 21.6
20:40 13.5 4.7 14.2 14.4 20.8
30:30 13.9 4.7 13.6 16.9 20.4
40:20 15.1 4.8 14.3 19.1 22.1
50:10 16.2 5.1 14.5 20.5 24.5

erence metric. The fps is measured on a Nvidia RTX 3090
GPU with a batch size of 1. The results show that our model



Table 4. Complexity and efficiency analysis in terms of the num-
ber of parameters (Params) and frames per second (fps) with the
average Chamfer Distance on the 3D-EPN dataset as references.
The * indicates the result for P2C*

Method Params ↓ fps ↑ Avg. CD-ℓ2 ↓
Folding[17] 2.4M 21.0 6.8
PCN [19] 4.1M 20.6 7.4
C2C [16] 68.1M 2.0 14.3
Inv [20] 41.0M 0.01 23.6
Gu et al. [6] 9.2M 2.3 21.3
PPN [9] 2.4M 1.9 28.1

P2C(Ours) 23.9M 21.3 14.1/10.9*
- w/o Decoder 0.8M N/A N/A

Table 5. The effect of various input sparsity measured in CD-ℓ2
scaled by 104.

#Points Average Plane Car Chair Table

64 13.9 4.5 15.8 15.9 19.2
256 11.4 4.4 9.5 13.7 17.9
1024 11.2 4.3 8.6 13.6 18.3

2048 11.1 4.3 8.6 13.5 18.1

Input Pred Input Pred Input Pred

64 Pts.

256 Pts.

Figure 4. Completion results of our method under severely sparse
input (64 or 256 points)

has more parameters than four out of six models, where the
decoder consumes most of the parameters despite it being a
simple MLP. However, our method still achieves a relatively
high fps. Notably, our framework is flexible and can accom-
modate changes in the network architecture. Thus, we can
implement our network using other lightweight or effective
models to achieve a better overall balance between the effi-
ciency and the effectiveness.

H. Robustness

We evaluate the robustness of the P2C framework by
completing objects of varying input resolutions. We ran-
domly downsample the original partial point cloud to differ-
ent densities and evaluate the quantitative results, which are
shown in Tab. 5. The results indicate that our method can
work well even in severely sparse cases. Additionally, vi-
sual results presented in Fig. 4 demonstrate that our method
can reliably generate complete shapes in various input res-

olutions, even in the cases of severe degradation.

I. Limitations
Although P2C has demonstrated promising results in

completing point clouds with only single partial data needed
for learning, several limitations still need to be addressed.
For example, the effectiveness of the training process heav-
ily relies on the representativeness of the training samples,
as the model needs to learn an unbiased shape prior for
the corresponding category: e.g., if all training samples of
chairs have no legs, the model will not be capable of com-
pleting legs for such biased chair observations.
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