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1. Details of Implicit Augmenter

The trainable implicit augmenter A(I)
ϕ can be considered

as a diverse motion transformer with a similar network ar-
chitecture of [4]. The main difference is that, instead of ob-
taining future activities, we aim to generate the diverse mo-
tion counterparts of the original observed sequence. More-
over, the training of A(I)

ϕ falls into the max-min adversarial
learning scope, to ensure the diversity and preserve the se-
mantic proximity of the H = 8 augmented samples. The
network architecture of A(I)

ϕ is shown in Figure 1. We note

that, the input of A(I)
ϕ is a sequence of T frames, and the

output is H = 8 diverse augmentations with distinct prop-
erties. Similar to [4], the DCT and IDCT are the discrete co-
sine transform and its inverse version, respectively. More-
over, its pipeline is to first yield the lower-part of a human
skeleton using G(1), and then the upper-part is obtained by
G(2). Both G(1) and G(2) are composed of 3 blocks, each of
which contains 3 fully-connected GCN layers. Consistent
with [4], z(1)h and z(2)h are the Gaussian noise samples1.

2. Supplement to Implementation Details

Our helper and predictor networks involve the same ar-
chitecture, derived from an existing deep end-to-end pre-
dictive model. At the H/P domain-generalizable learning
stage, the mini-batch size is set to 32. We note that, for both
H3.6M and GRAB, the model (including the implicit aug-
menter, and helper/predictor) is trained with 100 epochs,
while for HumanEVA-I, it is 50 epochs. Instead of using
the early-stopping strategy, we make the parameters of the
last epoch as the base model. The whole model is imple-
mented on PyTorch-1.9 framework, and trained on a single
NVIDIA Tesla V100 GPU.

3. Results on HumanEva-I

For HumanEva-I dataset [5], we leverage the 3 subjects
(S1, S2, S3) as our dataset. To evaluate the personalization
capability of the proposed H/P-TTP for unseen subjects, the

1To make a clear distinction, we use the blue color to quote the original
manuscript, and the red color to indicate this supplementary material.
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Figure 1. Network architecture of the implicit augmenter A(I)
ϕ .

specific data partitioning strategy is shown in the setup-2.3
in Table 1. Consistent with Table 4 and Table 5, both SoTA
approaches of PGBIG and SPGSN are selected as the base-
lines. The detailed results are reported in Table 1. We ob-
serve that, equipped with our H/P-TTP, all baselines achieve
better results. It evidences that the proposed H/P-TTP is in-
deed able to adapt to the unseen properties of new subjects,
which is consistent with the conclusion of the H3.6M and
GRAB datasets in the manuscript.

4. More Visualization
We supplement the visualization of all predicted poses

of 2 unseen subjects from the H3.6M and one additional
subject from the GRAB dataset. The specific visualization
of the predicted poses is shown in Figure 2 and Figure 3.

5. Continue Personalization for More Subjects
Numerous experiments in the manuscript, as well as in

this supplementary material, have investigated the personal-
ized predictive ability of the proposed H/P-TTP for a single
unseen subject. However, it may involve more unseen sub-
jects with varied properties in the real-world application.
Therefore, we further investigate the personalized ability of
the proposed H/P-TTP for more unseen subjects. To be pre-
cise, we select the motion sequences of two subjects, S1 and
S10, from the GRAB as the test set, and the disjointed 8 sub-
jects as the training. Then, starting with the base model ob-
tained from the training set, we alternately select a motion
sample from S1 and S10 to validate the personalized predic-



Unseen
test

subjects

MPJPE [mm] ↓ PMPJPE [mm] ↓ PCK@150mm [%] ↑ MPBLE [mm] ↓
PGBIG

[3]
PGBIG [3]
+H/P-TTP

SPGSN
[2]

SPGSN [2]
+H/P-TTP

PGBIG
[3]

PGBIG [3]
+H/P-TTP

SPGSN
[2]

SPGSN [2]
+H/P-TTP

PGBIG
[3]

PGBIG [3]
+H/P-TTP

SPGSN
[2]

SPGSN [2]
+H/P-TTP

PGBIG
[3]

PGBIG [3]
+H/P-TTP

SPGSN
[2]

SPGSN [2]
+H/P-TTP

S1 96.4 83.3 82.1 77.8 67.9 64.6 67.2 61.5 77.9 79.3 82.1 85.3 26.2 23.1 24.0 22.1
S2 90.1 87.4 88.5 83.0 74.2 70.9 74.3 68.2 74.2 76.4 79.6 81.1 23.4 21.0 20.3 18.7
S3 86.7 82.0 78.8 74.4 73.5 70.0 69.6 66.2 74.8 77.2 75.3 79.5 24.0 23.2 22.4 20.5

Average 91.1 84.2 83.1 78.4 71.9 68.5 70.4 65.3 75.6 77.6 79.0 82.0 24.5 22.4 22.2 20.4

Table 1. Average performance comparison (of both SoTA PGBIG [3] and SPGSN [2], on HumanEVA-I dataset [5]) of the end predicted
pose (1000ms) over samples of each unseen subject Sx with x = [1, 2, 3], and the corresponding average over all unseen subjects.

personalization
S1 S1 S1 (S1 ↔ S10) S10 S10 S10 (S1 ↔ S10)

w/o TTP single unseen subject alternating unseen subjects w/o TTP single unseen subject alternating unseen subjects

Method SPGSN [2] SPGSN [2]
+H/P-TTP

SPGSN [2]
+H/P-TTP

SPGSN [2] SPGSN [2]
+H/P-TTP

SPGSN [2]
+H/P-TTP

MPJPE ↓ 176.3 151.5 166.5 144.5 136.4 142.8
P-MPJPE ↓ 149.6 137.0 145.0 129.0 117.3 124.9

PCK@150mm↑ 64.1 68.6 65.7 67.8 70.4 65.7
MPBLE ↓ 27.1 25.0 26.4 26.6 24.7 25.3

Table 2. Average performance (of the end predicted pose) for evaluating the continue personalization of two alternating unseen subjects
(S1 and S10) from GRAB dataset. We abbreviate the test-time personalization to TTP for brevity.

tion ability for different subjects. We note that this alternat-
ing approach considers the continuously changing subjects.
Compared to first evaluating the results on all samples on
S1 and then on all samples on S10, this alternating setup is
more challenging and realistic. We then report the average
performance (under 4 protocols) over all motion samples of
S1 and S10 in Table 2.

From the result, we can derive the following key obser-
vations: 1) Either for the personalization to a single or more
unseen subjects, for the vanilla baselines, once the proposed
H/P-TTP is assembled, the overall performance is better.
This confirms that the proposed H/P-TTP is indeed able to
adapt to the properties and motion patterns of various un-
seen characters in the testing phase. 2) The personaliza-
tion of multiple subjects is typically more challenging than
that of a single subject, because of the continuously chang-
ing individual properties. However, the performance of our
H/P-TTP is also better than the vanilla baselines, even for
alternating unseen subjects, which is acceptable in practice.
3) The setup of continuously changing subjects can be eas-
ily extended to more (> 2) unseen subjects, which is not
fundamentally different from the experimental setup of 2
alternating unseen subjects. The above analysis shows the
scalability of our H/P-TTP for more unseen subjects in de-
ployment environments.

6. Supplement to Ablation Studies
In this section, we supplement the ablation studies of the

proposed H/P-TTP. All results are evaluated using the same
experimental setting as the main manuscript.

In our work, in order to establish the relationship be-
tween helper and predictor features, and their output with
respect to GT, we exploit the network layers before the
penultimate layer as the feature extractor and the remaining
as the generator. To verify it, we use different layers as (9)

division point MPJPE [mm] ↓ µ MPJPE [mm] ↓
SP

G
SN

[2
]

+H
/P

-T
T

P -2 103.4

SP
G

SN
[2

]
+H

/P
-T

T
P 0.93 102.8

-3 109.2 0.95 109.2

-4 109.2 0.97 109.2

Table 3. Impact of the division points of the extractor and genera-
tor, and the momentum size µ on the final performance.

fallback strategy P MPJPE [mm] ↓

SP
G

SN
[2

]
+H

/P
-T

T
P

w/o / 125.0

w/

48 109.3
60 106.5
72 102.8
84 114.2

Table 4. Impact of the fallback strategy, as well as the number of
steps P on MPJPE of the SPGSN [2]+H/P-TTP.

the division points of the extractor and generator. The
results are shown in Table 2(left), where −i layer means the
penultimate i-th layer.

Our proposed framework is a special case of the teacher-
student network, and thus the exponential moving aver-
age (EMA) is used to update the helper with momentum
µ = 0.95 after updating the predictor. Therefore, we also
investigate the (10) impact of different momentum sizes
on the final performance, as shown in Table 2(right).

In addition, to avoid forgetting the pre-trained knowl-
edge, we back off the parameters after P = 72 test-time
personalization steps to the base model. To verify the ef-
fectiveness of the (11) fallback strategy, we run the exper-
iments with and without it, as well as the different number
of steps P . The results are shown in Table 3.



Figure 2. Detailed visualization of predicted poses. We show the walking (top) and direction (bottom) of the unseen test subject S11 from
the H3.6M [1]. We observe that, with the help of the H/P-TTP, the predicted pose is more accurate and stable than the vanilla SPGSN.

Figure 3. Detailed visualization of predicted poses of the hammer-pass-1 activity of the unseen subject S7 from GRAB dataset.

7. Limitation

One limitation of our H/T-TTP is that when estimat-
ing the adjusted learning rate at test time for the first M
samples, the M -sized memory queue M has not been con-
structed yet. To be compatible with this situation, we ran-
domly select M samples from the training set in advance,
and take the corresponding h/p feature difference and p/gt
outcome difference as the initialization of M. Note that, h,
p are the abbreviations for the ”helper” and ”predictor”, and
gt is the ground truth.
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