
Efficient Video Prediction via Sparsely Conditioned Flow Matching
– Supplementary Material–

Aram Davtyan*, Sepehr Sameni*, Paolo Favaro
Computer Vision Group, Institute of Computer Science, University of Bern, Switzerland

{aram.davtyan, sepehr.sameni, paolo.favaro}@unibe.ch

A. Introduction
In the main paper we have introduced RIVER- a new

model and an efficient training procedure to perform video
prediction based on Flow Matching and randomized past
frame conditioning. This supplementary material provides
details that could not be included in the main paper due to
space limitations. In section B we describe in details the
architecture of our model and how we trained it on differ-
ent datasets. In section C we show the training curve of the
model and in section D we conduct an analysis on the train-
ing time and memory consumption and compare with that
of other methods. In section F we provide more samples
generated with our model.

B. Architecture and Training Details
Autoencoder. In this section we provide the configurations
of the VQGAN [9] for all the datasets used in the main pa-
per (see Table 5). All models were trained using the code
from the official taming transformers repository.1

Vector Field Regressor. In this section we provide imple-
mentation details of the network that regresses the condi-
tional time-dependent vector field vt(x |xτ−1, xc, τ−c). As
mentioned in the main paper, the network is implemented
as a U-ViT [4]. The detailed architecture is provided in Fig-
ure 10 and is shared across all datasets. First, the inputs
x, xτ−1 and xc are channel-wise concatenated and linearly
projected to the inner dimension of the ViT blocks. Besides
in and out projection layers, the network consists of 13 stan-
dard ViT blocks with 4 long skip connections between the
first 4 and the last 4 blocks. At each skip connection the in-
puts are channel-wise concatenated and projected to the in-
ner dimension of the ViT blocks. All ViT blocks apply layer
normalization [1] before the multihead self-attention [23]
(MHSA) layer and the MLP. The inner dimension of all ViT
blocks is 768 and 8 heads are used in all MHSA layers.

All models are trained for 300K iterations with the
AdamW [17] optimizer with the base learning rate equal

*Equal contribution.
1https://github.com/CompVis/taming-transformers

Figure 9. Training curve of RIVER on CLEVRER [28].

to 10−4 and weight decay 5 · 10−6. A learning rate linear
warmup for 5K iterations is used along with a square root
decay schedule. For the CLEVRER [28] dataset, random
color jittering is additionally used to prevent overfitting. We
observed that without it, the objects may change colors in
the generated sequences (see Figure 12). In all experiments
we used σmin = 10−7.

Additionally, we would like to highlight once again that
the excellent tradeoff of RIVER demonstrated in Figure 1
of the main paper is the motivation to use flow matching
instead of diffusion. Flow matching exhibits faster conver-
gence compared to diffusion models. Moreover, on BAIR
we observed DDPM fail to converge (see Figure 11). Be-
sides this, the same theoretical arguments used by the au-
thors of flow matching in the case of images can be extended
to the case of videos.

C. Training Curve
In Figure 9 we show the FVD [22] and PSNR of RIVER

trained on CLEVRER [28] against the iteration time. As
we can see, the training is stable and more iterations lead to
better results.

https://github.com/CompVis/taming-transformers


BAIR64×64 [8] BAIR256×256 [8] KTH [20] CLEVRER [28]
embed dim 4 8 4 4

n embed 16384 16384 16384 8192
double z False False False False

z channels 4 8 4 4
resolution 64 256 64 128

in channels 3 3 3 3
out ch 3 3 3 3

ch 128 128 128 128
ch mult [1,2,2,4] [1,1,2,2,4] [1,2,2,4] [1,2,2,4]

num res blocks 2 2 2 2
attn resolutions [16] [16] [16] [16]

dropout 0.0 0.0 0.0 0.0
disc conditional False False False -
disc in channels 3 3 3 -

disc start 20k 20k 20k -
disc weight 0.8 0.8 0.8 -

codebook weight 1.0 1.0 1.0 -
Table 5. Configurations of VQGAN [9] for different datasets. Notice that on the CLEVRER [28] dataset we did not utilize an adversarial
training.

ViT block

ViT block

ViT block

ViT block

ViT block

ViT block

ViT block

ViT block

ViT block

ViT block

C

ViT block

C

ViT block

C

ViT block

C

O
ut projection

xxτ−1xc

Project and 
Reshape

t

τ − c

- Position encoding

C - Concatenate and project

embed

embed

Figure 10. Architecture of the vector field regressor of RIVER. “ViT block” stands for a standard self-attention block used in ViT [7], that
is an MHSA layer, followed by a 2-layer wide MLP, with a layer normalization before each block and a skip connection after each block.
“Out projection” involves a linear layer, followed by a GELU [12] activation, layer normalization and a 3×3 convolutional layer.

D. Training Time and Memory Consumption

In Table 6, we compare the total training time and GPU
(or TPU) memory requirements of different models trained
on BAIR64×64 [8]. As we can see, RIVER is extremely
efficient and can achieve a reasonable FVD [22] with sig-
nificantly less compute than the other methods. For ex-
ample, SAVP [16], which has the same FVD as RIVER,
requires 4.6× more compute (measured by Mem×Time)
and all the models that take less compute than RIVER have
FVDs more than 250.

E. Sampling Speed

In this section we provide more comparisons in terms of
the sampling speed with different models. We test the mod-
els on the BAIR 64× 64 dataset, generating 16 frames and
measuring the time the generation required. For evaluation
we compare to some diffusion-based models with available
code (RaMViD [13], MCVD [24]). In addition, we pick
one RNN-based model (SRVP [11]) and one Transformer-
based (LVT [19]), to cover different model architectures.
The results are reported in Figure 13. Due to the sparse past
frame conditioning, RIVER is able to generate videos with
reasonable sampling time. However, if the focus is on the



Method Memory (GB) Time (Hours) Mem×Time (GB×Hour) FVD [22]
RVD [27] 24 - - 1272
MoCoGAN [21] 16 23 368 503
SVG-FP [6] 12 24 288 315
CDNA [10] 10 20 200 297
SV2P [2] 16 48 768 263
SRVP [11] 36 168 6048 181
VideoFlow [14] 128 336 43008 131
LVT [19] 128 48 6144 126
SAVP [16] 32 144 4608 116
DVD-GAN-FP [5] 2048 24 49152 110
Video Transformer(S) [25] 256 33 8448 106
TriVD-GAN-FP [18] 1024 280 286720 103
CCVS(Low res) [15] 128 40 5120 99
MCVD(spatin) [24] 86 50 4300 97
Video Transformer(L) [25] 512 336 172032 94
FitVid [3] 1024 288 294912 94
MCVD(concat) [24] 77 78 6006 90
NUWA [26] 2560 336 860160 87
RaMViD [13] 320 72 23040 83
RIVER 25 25 625 106

Table 6. Compute comparisons. We report the memory and training times requirements of different models trained on BAIR64×64 [8].
The overall compute (Mem × Time) shows that RIVER delivers better FVD with much less compute.

FM DDPM
Figure 11. Video generation with different generative models. Use
Acrobat Reader to play videos.

inference speed, one might opt for RNN-based models.

F. Qualitative Results
Here we provide more visual examples of the sequences

generated with RIVER. See Figures 15 and 17 for results
on the BAIR [8] dataset, Figures 14 and 16 for results on
the KTH [20] dataset and Figures 18 and 20 for video pre-
diction and planning on the CLEVRER [28] dataset re-
spectively. Besides this, we highlight the stochastic na-
ture of the generation process with RIVER in Figure 19
and the impact of extreme (s > 0.5) warm-start sampling
strength in Figure 21. For more qualitative results and vi-
sual comparisons with the prior work, please, visit our web-
site https://araachie.github.io/river.

References
[1] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer

normalization. ArXiv, abs/1607.06450, 2016. 1
[2] Mohammad Babaeizadeh, Chelsea Finn, D. Erhan, Roy H.

Campbell, and Sergey Levine. Stochastic variational video
prediction. ArXiv, abs/1710.11252, 2018. 3

[3] Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj
Nair, Sergey Levine, Chelsea Finn, and Dumitru Erhan.
Fitvid: Overfitting in pixel-level video prediction. arXiv
preprint arXiv:2106.13195, 2021. 3

[4] Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are
worth words: a vit backbone for score-based diffusion mod-
els. arXiv preprint arXiv:2209.12152, 2022. 1

[5] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversar-
ial video generation on complex datasets. arXiv: Computer
Vision and Pattern Recognition, 2019. 3

[6] Emily Denton and Rob Fergus. Stochastic video generation
with a learned prior. In International conference on machine
learning, pages 1174–1183. PMLR, 2018. 3

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ArXiv, abs/2010.11929, 2021. 2

[8] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey
Levine. Self-supervised visual planning with temporal skip
connections. In CoRL, 2017. 2, 3

[9] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-

https://araachie.github.io/river


time →

Figure 12. A sequence generated with RIVER trained on the CLEVRER dataset without data augmentation. Notice how the color of the
grey cylinder changes after its interaction with the cube. In order to prevent such behaviour, both the autoencoder and RIVER are trained
with random color jittering as data augmentation. The first frame can be played as a video in Acrobat Reader.

Figure 13. FVD vs. inference speed, the time required to gener-
ate a 16 frames long 64×64 resolution video on a single Nvidia
GeForce RTX 3090 GPU. The sizes of the markers are propor-
tional to the standard deviation of measured times in 20 indepen-
dent experiments.

ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12873–12883, 2021. 1, 2

[10] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsuper-
vised learning for physical interaction through video predic-
tion. Advances in neural information processing systems, 29,
2016. 3

[11] Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen,
Sylvain Lamprier, and Patrick Gallinari. Stochastic latent
residual video prediction. In ICML, 2020. 2, 3

[12] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv: Learning, 2016. 2

[13] Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen,
and Andrea Dittadi. Diffusion models for video prediction
and infilling. arXiv preprint arXiv:2206.07696, 2022. 2, 3

[14] Manoj Kumar, Mohammad Babaeizadeh, D. Erhan, Chelsea
Finn, Sergey Levine, Laurent Dinh, and Durk Kingma. Vide-
oflow: A conditional flow-based model for stochastic video
generation. arXiv: Computer Vision and Pattern Recogni-
tion, 2020. 3

[15] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid.
Ccvs: Context-aware controllable video synthesis. Advances

in Neural Information Processing Systems, 34:14042–14055,
2021. 3

[16] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,
Chelsea Finn, and Sergey Levine. Stochastic adversarial
video prediction. arXiv preprint arXiv:1804.01523, 2018.
2, 3

[17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 1

[18] Pauline Luc, Aidan Clark, Sander Dieleman, Diego de
Las Casas, Yotam Doron, Albin Cassirer, and Karen Si-
monyan. Transformation-based adversarial video prediction
on large-scale data. ArXiv, abs/2003.04035, 2020. 3

[19] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, De-
nis Zorin, and Evgeny Burnaev. Latent video transformer.
arXiv preprint arXiv:2006.10704, 2020. 2, 3

[20] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recog-
nizing human actions: a local svm approach. In Proceedings
of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., volume 3, pages 32–36. IEEE, 2004. 2, 3

[21] S. Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz.
Mocogan: Decomposing motion and content for video gen-
eration. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1526–1535, 2018. 3

[22] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphaël Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. ArXiv, abs/1812.01717, 2018. 1, 2, 3

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017. 1

[24] Vikram Voleti, Alexia Jolicoeur-Martineau, and Christo-
pher Pal. Mcvd: Masked conditional video diffusion for
prediction, generation, and interpolation. arXiv preprint
arXiv:2205.09853, 2022. 2, 3

[25] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkor-
eit. Scaling autoregressive video models. arXiv preprint
arXiv:1906.02634, 2019. 3

[26] Chenfei Wu, Jian Liang, Lei Ji, F. Yang, Yuejian Fang, Daxin
Jiang, and Nan Duan. Nüwa: Visual synthesis pre-training
for neural visual world creation. In ECCV, 2022. 3

[27] Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Dif-
fusion probabilistic modeling for video generation. arXiv
preprint arXiv:2203.09481, 2022. 3



last context frame time →
G

T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

Figure 14. Video prediction on the KTH dataset. Odd rows show frames of the original video. Even rows show the video generated by
RIVER when fed the context frames of the row above (GT). We observe that RIVER is able to generate sequences with diversity and
realism. The images in the first column after the bold vertical line can be played as videos in Acrobat Reader.

[28] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Ji-
ajun Wu, Antonio Torralba, and Joshua B. Tenenbaum.
Clevrer: Collision events for video representation and rea-
soning. ArXiv, abs/1910.01442, 2020. 1, 2, 3



last context frame time →
G

T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

Figure 15. Video prediction on the BAIR dataset at 256 × 256 resolution. The model predicts the future frames conditioned on a single
initial frame. The frames in the first column after the bold vertical line can be played as videos in Acrobat Reader.



last context frame time →

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

Figure 16. Failure cases on the KTH dataset. A common failure mode is when a certain action gets confused with another one, which
results in a motion that morphs into a different one. In all examples the model is asked to predict 25 future frames given the first 5. The
images in the first column after the bold vertical line can be played as videos in Acrobat Reader.

last context frame time →

G
T

pr
ed

ic
te

d

Figure 17. Failure case on the BAIR dataset. A common failure mode emerges when generating longer sequences and is when the interaction
causes objects to change their class, shape or even to disappear. The images in the first column after the bold vertical line can be played as
videos in Acrobat Reader.



last context frame time →
G

T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

G
T

pr
ed

ic
te

d

Figure 18. Video prediction on the CLEVRER dataset. In order to predict the future frames, the model conditions on the first 2 frames.
Only the last context frame is shown. The model succeeds to predict the motion that was observed in the context frames. However, it
cannot predict new objects as in the ground truth and introduces random new objects due to the stochasticity of the generation process. The
images in the first column after the bold vertical line can be played as videos in Acrobat Reader.

time →

Figure 19. Two sequences generated with RIVER trained on the CLEVRER dataset. The model was asked to predict 19 frames given 1.
Note the very different fates of the blue cube in these two sequences. The images in the first column can be played as videos in Acrobat
Reader.



source frame time → target frame

Figure 20. Visual planning with RIVER on the CLEVRER dataset. Given the source and the target frames, RIVER generates intermediate
frames, so that they form a plausible realistic sequence. The images in the first column can be played as videos in Acrobat Reader.

time →

s
=

0
s
=

0
.5

Figure 21. The effect of extreme (s = 0.5) warm-start sampling strength. The first frame in each row can be played as a video in Acrobat
Reader.


	anm40: 
	40.19: 
	40.18: 
	40.17: 
	40.16: 
	40.15: 
	40.14: 
	40.13: 
	40.12: 
	40.11: 
	40.10: 
	40.9: 
	40.8: 
	40.7: 
	40.6: 
	40.5: 
	40.4: 
	40.3: 
	40.2: 
	40.1: 
	40.0: 
	anm39: 
	39.19: 
	39.18: 
	39.17: 
	39.16: 
	39.15: 
	39.14: 
	39.13: 
	39.12: 
	39.11: 
	39.10: 
	39.9: 
	39.8: 
	39.7: 
	39.6: 
	39.5: 
	39.4: 
	39.3: 
	39.2: 
	39.1: 
	39.0: 
	anm38: 
	38.5: 
	38.4: 
	38.3: 
	38.2: 
	38.1: 
	38.0: 
	anm37: 
	37.5: 
	37.4: 
	37.3: 
	37.2: 
	37.1: 
	37.0: 
	anm36: 
	36.5: 
	36.4: 
	36.3: 
	36.2: 
	36.1: 
	36.0: 
	anm35: 
	35.5: 
	35.4: 
	35.3: 
	35.2: 
	35.1: 
	35.0: 
	anm34: 
	34.18: 
	34.17: 
	34.16: 
	34.15: 
	34.14: 
	34.13: 
	34.12: 
	34.11: 
	34.10: 
	34.9: 
	34.8: 
	34.7: 
	34.6: 
	34.5: 
	34.4: 
	34.3: 
	34.2: 
	34.1: 
	34.0: 
	anm33: 
	33.18: 
	33.17: 
	33.16: 
	33.15: 
	33.14: 
	33.13: 
	33.12: 
	33.11: 
	33.10: 
	33.9: 
	33.8: 
	33.7: 
	33.6: 
	33.5: 
	33.4: 
	33.3: 
	33.2: 
	33.1: 
	33.0: 
	anm32: 
	32.17: 
	32.16: 
	32.15: 
	32.14: 
	32.13: 
	32.12: 
	32.11: 
	32.10: 
	32.9: 
	32.8: 
	32.7: 
	32.6: 
	32.5: 
	32.4: 
	32.3: 
	32.2: 
	32.1: 
	32.0: 
	anm31: 
	31.17: 
	31.16: 
	31.15: 
	31.14: 
	31.13: 
	31.12: 
	31.11: 
	31.10: 
	31.9: 
	31.8: 
	31.7: 
	31.6: 
	31.5: 
	31.4: 
	31.3: 
	31.2: 
	31.1: 
	31.0: 
	anm30: 
	30.17: 
	30.16: 
	30.15: 
	30.14: 
	30.13: 
	30.12: 
	30.11: 
	30.10: 
	30.9: 
	30.8: 
	30.7: 
	30.6: 
	30.5: 
	30.4: 
	30.3: 
	30.2: 
	30.1: 
	30.0: 
	anm29: 
	29.17: 
	29.16: 
	29.15: 
	29.14: 
	29.13: 
	29.12: 
	29.11: 
	29.10: 
	29.9: 
	29.8: 
	29.7: 
	29.6: 
	29.5: 
	29.4: 
	29.3: 
	29.2: 
	29.1: 
	29.0: 
	anm28: 
	28.17: 
	28.16: 
	28.15: 
	28.14: 
	28.13: 
	28.12: 
	28.11: 
	28.10: 
	28.9: 
	28.8: 
	28.7: 
	28.6: 
	28.5: 
	28.4: 
	28.3: 
	28.2: 
	28.1: 
	28.0: 
	anm27: 
	27.17: 
	27.16: 
	27.15: 
	27.14: 
	27.13: 
	27.12: 
	27.11: 
	27.10: 
	27.9: 
	27.8: 
	27.7: 
	27.6: 
	27.5: 
	27.4: 
	27.3: 
	27.2: 
	27.1: 
	27.0: 
	anm26: 
	26.7: 
	26.6: 
	26.5: 
	26.4: 
	26.3: 
	26.2: 
	26.1: 
	26.0: 
	anm25: 
	25.7: 
	25.6: 
	25.5: 
	25.4: 
	25.3: 
	25.2: 
	25.1: 
	25.0: 
	anm24: 
	24.12: 
	24.11: 
	24.10: 
	24.9: 
	24.8: 
	24.7: 
	24.6: 
	24.5: 
	24.4: 
	24.3: 
	24.2: 
	24.1: 
	24.0: 
	anm23: 
	23.12: 
	23.11: 
	23.10: 
	23.9: 
	23.8: 
	23.7: 
	23.6: 
	23.5: 
	23.4: 
	23.3: 
	23.2: 
	23.1: 
	23.0: 
	anm22: 
	22.21: 
	22.20: 
	22.19: 
	22.18: 
	22.17: 
	22.16: 
	22.15: 
	22.14: 
	22.13: 
	22.12: 
	22.11: 
	22.10: 
	22.9: 
	22.8: 
	22.7: 
	22.6: 
	22.5: 
	22.4: 
	22.3: 
	22.2: 
	22.1: 
	22.0: 
	anm21: 
	21.21: 
	21.20: 
	21.19: 
	21.18: 
	21.17: 
	21.16: 
	21.15: 
	21.14: 
	21.13: 
	21.12: 
	21.11: 
	21.10: 
	21.9: 
	21.8: 
	21.7: 
	21.6: 
	21.5: 
	21.4: 
	21.3: 
	21.2: 
	21.1: 
	21.0: 
	anm20: 
	20.21: 
	20.20: 
	20.19: 
	20.18: 
	20.17: 
	20.16: 
	20.15: 
	20.14: 
	20.13: 
	20.12: 
	20.11: 
	20.10: 
	20.9: 
	20.8: 
	20.7: 
	20.6: 
	20.5: 
	20.4: 
	20.3: 
	20.2: 
	20.1: 
	20.0: 
	anm19: 
	19.21: 
	19.20: 
	19.19: 
	19.18: 
	19.17: 
	19.16: 
	19.15: 
	19.14: 
	19.13: 
	19.12: 
	19.11: 
	19.10: 
	19.9: 
	19.8: 
	19.7: 
	19.6: 
	19.5: 
	19.4: 
	19.3: 
	19.2: 
	19.1: 
	19.0: 
	anm18: 
	18.4: 
	18.3: 
	18.2: 
	18.1: 
	18.0: 
	anm17: 
	17.4: 
	17.3: 
	17.2: 
	17.1: 
	17.0: 
	anm16: 
	16.4: 
	16.3: 
	16.2: 
	16.1: 
	16.0: 
	anm15: 
	15.4: 
	15.3: 
	15.2: 
	15.1: 
	15.0: 
	anm14: 
	14.4: 
	14.3: 
	14.2: 
	14.1: 
	14.0: 
	anm13: 
	13.4: 
	13.3: 
	13.2: 
	13.1: 
	13.0: 
	anm12: 
	12.4: 
	12.3: 
	12.2: 
	12.1: 
	12.0: 
	anm11: 
	11.4: 
	11.3: 
	11.2: 
	11.1: 
	11.0: 
	anm10: 
	10.21: 
	10.20: 
	10.19: 
	10.18: 
	10.17: 
	10.16: 
	10.15: 
	10.14: 
	10.13: 
	10.12: 
	10.11: 
	10.10: 
	10.9: 
	10.8: 
	10.7: 
	10.6: 
	10.5: 
	10.4: 
	10.3: 
	10.2: 
	10.1: 
	10.0: 
	anm9: 
	9.21: 
	9.20: 
	9.19: 
	9.18: 
	9.17: 
	9.16: 
	9.15: 
	9.14: 
	9.13: 
	9.12: 
	9.11: 
	9.10: 
	9.9: 
	9.8: 
	9.7: 
	9.6: 
	9.5: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	anm8: 
	8.21: 
	8.20: 
	8.19: 
	8.18: 
	8.17: 
	8.16: 
	8.15: 
	8.14: 
	8.13: 
	8.12: 
	8.11: 
	8.10: 
	8.9: 
	8.8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm7: 
	7.21: 
	7.20: 
	7.19: 
	7.18: 
	7.17: 
	7.16: 
	7.15: 
	7.14: 
	7.13: 
	7.12: 
	7.11: 
	7.10: 
	7.9: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.21: 
	6.20: 
	6.19: 
	6.18: 
	6.17: 
	6.16: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.21: 
	5.20: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.21: 
	4.20: 
	4.19: 
	4.18: 
	4.17: 
	4.16: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


