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1. Phrase-grounding
For phrase-grounding evaluation (on MS-CXR dataset),

we followed [3] and trained our model using only the im-
pression section of the reports. For this task, we dropped all
the images of MS-CXR from the training set, to make sure
that our model uses them only for inference. Qualitative re-
sults presented below for each of the 8 abnormality classes
in MS-CXR dataset (Figure 2).

2. Cross modal alignment-extension
Throughout the paper, for simplicity, we describe how

our method creates and utilizes weighted visual representa-
tion with respect to each textual feature. We hereby extend
the explanation from the paper and describe the comple-
mentary direction – weighted textual features with respect
to each image region.

Cross modal alignment. This section is extension of
section 3.2 from the paper. To create the weighted textual
features with respect to each image region we start with
computing the cosine similarity cij between vi and tj , to
create ci = [ci1, ci2, . . . , ciNw ]. It is further normalized us-
ing softmax, in order to get an attention weight:

wi = softmax(λci). (1)

The attended visual feature mi with respect to the ith image
region is the weighted sum of all the textual local represen-
tations:

mi =

Nw∑
j=1

wi[j] · tj . (2)

Next, we calculate the alignment between vi and its cor-
responding mi. The local alignment ai is calculated as:

ai = A(mi, vi) =
mi ◦ vi

∥mi ◦ vi∥2
, (3)

where ◦ is an element-wise multiplication and ∥·∥2 is the
L2-norm.

Aggregation. This section is extension of section 3.3
from the paper. The local alignments are aggregated into a
single alignment vector using a weighted sum. Let the local

Figure 1: Cross-modal alignment- textual weighted rep-
resentation. Given an image-report pair (xv, xt), we com-
pute for each image region vi its corresponding textual
weighted representation mi. This is done by using the
similarity between each word representation tj to vi as the
weight for this region wi[j]. The right text shows that the
words that correspond to the selected image region are high-
lighted in orange, representing the higher weight of these
words. The final textual representation, mi, is created by
a weighted sum of tj . This figure corresponds to figure 3
from the paper.

alignments, computed at the alignment module, be AT =
{a1, a2, a3...aNr

}. Let ā be the mean of AT . The weight
of at is defined as:

qt =

(
softmax

(Wq ā · (Wk AT )
T

√
d

))
t

, (4)

where 1 ≤ t ≤ Nr, Wq and Wk are linear transformations
of the self-attention, and d is the feature dimension.

The final alignment vector between an image and a re-
port is defined as:

af =

Nr∑
t=1

qt (Wv · at). (5)

Loss. This section is extension of section 3.4 from the
paper. Recall that our loss is composed of three compo-
nents: global, local internal and local external. The use of
weighted textual features influence only local alignments,
therefore we hereby describe the local internal and local ex-
ternal losses which use the weighted textual features with
respect to each image region.



Local external loss: the loss is computed as described in
equation (8), while this time Aagg is the aggregated repre-
sentation based on the weighted-textual representations and
the visual representations, as described in the section above.

Local internal loss: Lint, is given the local visual repre-
sentation, vi, as well as its corresponding attention weighted
textual representation, mi.

The loss is defined as follows:

Lint(x
k
v , x

k
t ) =

Nr∑
i=1

(l
vi|m
k + l

mi|v
k ),

l
vi|m
k = −log

(
exp(ai(vi,mi)/τ)∑Nr

j=1 exp(ai(vi,mj)/τ)

)
,

l
mi|v
k = −log

(
exp(ai(vi,mi)/τ)∑Nr

j=1 exp(ai(vj ,mi)/τ)

)
.

(6)

We sum the losses related to the weighted visual features
with the losses related to the weighted textual features for
both the local internal loss and the local external loss.

3. Implementation details
Training data pre-processing (MIMIC-CXR). Im-

ages: we resize the original images to 256 pixels on
the larger dimension and randomly/center cropped (train-
ing/inference) the resized images. We used Resnet50 as our
image encoder. We extract the local features from the last
convolution layer to get 19X19 feature maps which result in
361 local image regions.

Reports: we extract the impression and findings sections
of the report using the official script provided in the github
of MIMIC-CXR. We used Bio-clinical BERT tokenizer to
tokenize the extracted text. Following [8] we set the maxi-
mum number of tokens per report to 97.

Training details. We used Adam optimizer with an
initial learning rate of 5e-5 and a weight decay of 1e-6.
We measured the performance on the validation set us-
ing Recall@K where K=1,5,10 for both Image-to-Text re-
trieval and Text-to-Image. We set the maximum number
of epochs to 50 and used the sum of those metrics Rsum

as the early stopping criteria (plateau over 5 epochs). The
best checkpoint is defined as the checkpoint with the high-
est Rsum. We use batch size of 48. All models were trained
on a single A100 GPU. For all losses we used τ = 0.1.

4. Additional results
Classification. Following previous works [8,23,27], we

employ the Linear Classification framework to assess the
transferability of our trained image encoder. This involves
the freezing of the trained ResNet-50 image encoder while
exclusively training a randomly initialized linear classifi-
cation head for the subsequent classification task. We as-

sess our model’s performance on the CheXpert and RSNA
datasets using 1%, 10%, and 100% of the training data. We
report the area under the ROC curve (AUROC) as the eval-
uation metric for both datasets (Table 1). The results of
[8,23,27] are reported in their respective papers. We out-
perform their results for the described task.

Method CheXpert RSNA
1% 10% 100% 1% 10% 100%

MGCA [23] 87.6 88.0 88.2 88.6 89.1 89.9
ConVIRT [27] 85.9 86.8 87.3 77.4 80.1 81.3
GLoRIA [8] 86.6 87.8 88.1 86.1 88.0 88.6
Ours 88.0 88.3 88.7 88.7 89.4 90.6

Table 1: Classification. Linear classification results (AU-
ROC [%]) on CheXpert and RSNA with 1%, 10%, 100%
training data.

Aggregation weights visualization. As described in
section 3.3 in the paper, we assign a weight qt to each lo-
cal alignment at based on their level of informativeness.
Our goal is to assign higher weights to local representations
(words from the report) that describe distinct information,
such as the pathologies.

Below are three examples of reports along with the cor-
responding weight assigned to each word in the report.

Each word is shaded to reflect its weight (value of qt);
the darker the color the higher the weight. As expected, the
mentions of the pathology receive higher weights compared
to descriptions of normalities, such as the size of the cardiac
silhouette. Each example is marked with a different color.

”... there is moderate tortuosity of the thoracic

aorta ... the lungs appear clear ...”

”... there is no pneumothorax ... bilateral pleural

effusions are likely ...”

”... grossly unchanged bilateral pleural

effusions ... cardiac silhouette is within normal
limits ...”

Comparison to pre-trained models. Pre-trained mod-
els that were trained on massive amounts of image-text pairs
in the natural image domain (i.e., CLIP) do not generalize
well to the medical domain. For example, in image-to-text
retrieval by CLIP, a generic sentence about the presence of
pneumonia in a radiograph is identified as the top-1 match
of 60% of the images, despite only 7% of the images actu-
ally containing Pneumonia. Only adapting the training data
is not enough. [27] presents a similar approach to CLIP
with adaptations for the medical domain, by replacing the
encoders and the training data. As shown, Our results out-
perform [27]’s (Tables 1-3 in the paper).



A
te

le
ct

as
is

”Left lower lobe collapse is
new”

”possible small left pleural
effusion with adjacent

atelectasis”

”left lower lobe is still
collapsed”

”multisegmental lower lobe
opacities are present,

consistent with areas of
atelectasis lung”

CNR 1.625 CNR 1.932 CNR 1.663 CNR 0.909

L
un

g
O

pa
ci

ty

”hazy opacity in the left
suprahilar lung may represent

ground-glass opacity”

”patchy ground-glass
opacities are seen in the left

lung base”

”ground-glass opacities in the
left lung”

”patchy ground-glass opacity
in the mid right lung is also

present”
CNR 1.877 CNR 1.599 CNR 1.413 CNR 2.897

Pl
eu

ra
le

ff
us

io
n

”small pleural effusion is
stable”

”moderate right pleural
effusion is unchanged

compared to the prior exam”

”the minimal left pleural
effusion persists”

”small amount of associated
right pleural effusion is

demonstrated”
CNR 2.507 CNR 1.900 CNR 1.658 CNR 1.602

E
de

m
a

”evidence of worsening
pulmonary edema and mitral

regurgitation ”

”hazy bilateral parenchymal
opacities favored to represent

edema”

”hazy perihilar opacities
maybe due to pulmonary

edema”

”interstitial edema is present
in the right lower lung”

CNR 1.832 CNR 1.378 CNR 1.698 CNR 1.810



C
ar

di
om

eg
al

y

”enlarged cardiac silhouette” ”enlarged cardiac silhouette” ”enlarged cardiac silhouette” ”heart size is enlarged”
CNR 1.455 CNR 1.471 CNR 1.294 CNR 0.908

Pn
eu

m
on

ia

”left lower lobe pneumonia” ”right lower lung pneumonia” ”patchy left base opacity” ”parenchymal opacity in the
left lower lobe”

CNR 2.538 CNR 1.877 CNR 2.097 CNR 1.931

Pn
eu

m
ot

ho
ra

x

”large right pneumothorax” ”right-sided basal
pneumothorax”

”right-sided hydro
pneumothorax”

”apical component of
pneumothorax”

CNR 1.071 CNR 1.385 CNR 1.358 CNR 1.370

C
on

so
lid

at
io

n

”there is left lower lobe
consolidation”

”patchy consolidation in the
mid left lung”

”patchy consolidation in the
lower lung”

”patchy consolidation in the
central right lung”

CNR 1.982 CNR 2.419 CNR 2.118 CNR 1.695

Figure 2: Phrase-grounding — qualitative results. Given a phrase and an image, the goal is to produce a similarity map
between the phrase and the image. Brighter color indicates higher similarity of that region to the given phrase. The results are
measured using CNR; higher values indicate good localization of the phrase in the image. Each row in the figure represents
one of the abnormalitiy classes of MS-CXR dataset. Recall that our model was not trained for that task, but still learned to
match well between image regions and their corresponding phrases.


