
Supplementary Material
In this supplementary material, we provide additional

details which we could not include in the main paper due
to space limitation. Specifically, we provide:

• Detailed illustrations on PivotNet design.
• Additional ablation studies.
• Extensive qualitative visualization results.

A. Detailed illustrations on model design
A.1. Code of the custom matching algorithm

We provide the python code of the custom matching al-
gorithm as follows. The input cost refers to the distance ar-
ray, where cost[i][j] denotes the L1 distance between the i-
th point in the ground truth and the j-th point in the line pre-
diction. dp[i][j] denotes the lowest matching cost between
the front-i points in the ground truth and the front-j points
in the line prediction. mem sort stores the minimum cost
during traversal to avoid unnecessary sorting. match res1
and match res2 store the temporary matching results.

def pivot_dynamic_matching(cost: np.array):
A, B = cost.shape
assert A >= 2 and B >= 2, \
"A line should contain two points at least"
if A > B: # special case
seq_dist = 0
for j in range(B):

seq_dist += cost[j][j]
combination = list(range(B))
return seq_dist, combination

dp = np.ones((A, B)) * np.inf
mem_sort = np.ones((A, B)) * np.inf
match_res1 = [[] for _ in range(B)]
match_res2 = [[] for _ in range(B)]
# initialize
for j in range(0, B-A+1):
match_res1[j] = [0]
mem_sort[0][j] = cost[0][0]
if j == 0:

dp[0][j] = cost[0][0]
# update
for i in range(1, A):
for j in range(i, B-A + i+1):

dp[i][j] = mem_sort[i-1][j-1] \
+ cost[i][j]

if dp[i][j] < mem_sort[i][j-1]:
mem_sort[i][j] = dp[i][j]
if i < A-1:
match_res2[j] = match_res1[j-1] + [j]

else:
mem_sort[i][j] = mem_sort[i][j-1]
if i < A -1:
match_res2[j] = match_res2[j-1]

if i < A-1:
match_res1 = match_res2.copy()
match_res2 = [[] for _ in range(B)]

seq_dist = dp[-1][-1]
combination = match_res1[-2] + [B-1]
return seq_dist, combination

A.2. Detailed illustrations of notations

Fig.5 illustrates the notations of pivot dynamic match-
ing (PDM) in detail. As stated in Sec.3.2.3, given a ground
truth sequence Sp = {vn}Tn=1, and a predicted line Ŝ =
{v̂n}Nn=1, PDM searches the optimal T-combination β∗

with the lowest sequence matching cost among all the T-
combinations. T is the length of the ground truth sequence,
and N is the predefined max number of points in a line
prediction. For predicted lines with distinct point distribu-
tion, the optimal β∗ is different, resulting in distinct splits of
pivot sequence Ŝp and collinear sequence Ŝc. Fig.5 shows
examples of β∗, Sp, Ŝ, Ŝp and Ŝc.
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Figure 5: More illustrations of notations in pivot dynamic match-
ing module. β∗ is the optimal T -combination for the predicted
lines with respect to the ground truth. The figure shows the case
where T = 4, N = 10. The ground truth sequence Sp contains
only pivot points while the predicted sequence Ŝ contains both
pivot points and collinear points. Ŝ is split into a pivot sequence
Ŝp and a collinear sequence Ŝc based on β∗, which is different
for distinct point distribution. Predicted pivot points in Ŝp is in
one-to-one correspondence to the ground truth sequence Sp, and
|Sp| = |Ŝp| = T , while the number of collinear points |Ŝc| is
N − T .

A.3. Ground-truth pivot point generation

Pivot points in the paper are defined as the points in a
map element that contribute to the overall shape and typ-



ically indicate a change in direction. Ground-truth pivot
point generation can be considered as a polyline simplifi-
cation problem, which has been studied for years [1, 3,
6, 7, 8]. Given a polyline connected by vertices, polyline
simplification aims to find a similar polyline with fewer
vertices, which we call pivot points. In this paper, we
choose Visvalingam-Whyatt (VW) algorithm [8] to gen-
erate ground-truth pivot points. Given an ordered set of
points, the importance of each interior point is determined
by the area of triangle formed by it and its immediate neigh-
bors. Then the point with the smallest triangle area is ob-
tained. If the area is below the predefined threshold, the
point is removed from the set. After that, the triangle area
is calculated again to find the most unimportant point. This
process is repeated until no triangle area is below the thresh-
old. It is worth noting that the VW algorithm [8] is used for
ground truth generation only and can be simply replaced by
other pivot point generation methods like [1, 3, 6, 7].

B. Additional ablation studies

B.1. Impact of BEV encoder layer number

The impact of BEV encoder layer number is evaluated
in Table 7. The performance of PivotNet improves with
more encoder and decoder layers. Even with single en-
coder and decoder layer, PivotNet achieves satisfying per-
formance, i.e., 36.0% in mAP.

Layer Num. APdivider APped APboundary mAP

(1, 1) 38.2 33.7 36.0 36.0
(2, 4) 45.5 36.9 42.4 41.6
(4, 2) 46.3 38.2 41.8 42.1
(4, 4) 47.6 38.3 43.8 43.3
(6, 6) 48.0 38.9 45.9 44.3

Table 7: Impact of BEV encoder layer number. The gray row rep-
resents the setting we use in default.

B.2. Impact of the maximum instance number

We evaluate the effect of maximum instance number in
Table 8. We define the maximum instance number based
on the rule that it should be larger than the instance num-
ber in typical ground truth. In default, we choose max-
imum instance number of (20, 25, 15) for lane-divider,
ped-crossing, and road-boundary respectively. We pro-
vide performances with other number settings in Table 8.
The performance of PivotNet get saturated when the maxi-
mum instance number is set to (20, 25, 15).

B.3. Impact of the maximum pivot point number

The impact of the maximum pivot point number is eval-
uated in Table 9. The maximum number of pivot points

Instance Num. APdivider APped APboundary mAP

(15, 20, 10) 46.5 37.1 42.8 42.2
(20, 25, 15) 47.6 38.3 43.8 43.3
(30, 30, 30) 47.6 38.9 43.2 43.2

Table 8: Impact of the maximun instance number. The gray row
represents the setting we use in default.

roughly represents the complexity of map elements that Piv-
otNet is able to model. For a certain type of map element,
too small maximum number will lead to insufficient model-
ing capability, yet too large maximum number will increase
the learning burden of the model. Therefore, an appropriate
value is required for trade-off.

Pivot Point Num. 10 20 30
APdivider 47.6 47.5 42.6

Pivot Point Num. 30 50 60
APboundary 43.8 45.4 43.2

Table 9: Impact of the maximum pivot point number.

C. More qualitative visualization results
Fig.6-9 provide extensive visualization results for com-

parison with SOTA approaches [2, 4] on various environ-
mental conditions. The visualization of HDMapNet [2] is
reproduced with its public code, and that of MapTR [4] is
generated by its released model checkpoint. Even in chal-
lenging road scenarios like intersections and dense roads,
PivotNet produces accurate yet compact representations.

We visualize the predictions of the PivotNet with Swin-
Tiny [5] backbone on nuScenes. The predictions on dif-
ferent environmental conditions are presented. Even at the
most challenging night scenario, the predictions near the
vehicle closely match the ground truth (see Fig. 9). Seen
from visualization, the modeling of PivotNet is flexible and
can describe map elements of arbitrary shape, including line
segments, curves, and combinations of them.
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Figure 6: Visualization results under the weather condition of sunny.
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Figure 7: Visualization results under the weather condition of cloudy.



Surrounding Multi-view Images HDMapNet MapTR Ours GroundTruth

Lane Divider Road BoundaryPedestrian Crossing

Figure 8: Visualization results under the weather condition of rainy.
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Figure 9: Visualization results under the lighting condition of nighttime.
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