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A. More Experimental Results

Training details. We also train the ViT-B with our pro-
posed STA. We adopt dense sampling [5, 2] on K400. We
sample 16 consecutive frames with the stride of 4. The res-
olution is 224 × 224. We perform RandAug augmentation
(9, 0.5) [1], label smoothing (0.1) [4], mixup (0.8) [7], cut-
mix (1.0) [6], and random horizontal flip (0.5). In addition,
we adopt the repeated augmentation [3]. With DeepSpeed 1,
We use the linearly scale scheme to ensure effective param-
eter updates across different batch sizes during training, i.e.,
lr = base learning rate × batch size / 256. Specifically, we
use the AdamW optimizer with a base learning rate of 1e−3
and weight decay of 0.05. Beside, using a cosine decay
learning rate scheduler and 5 epochs of linear warm-up, we
finetune the model for 100 epochs with a total batch size of
128 on 4 nodes of 8 Tesla V100 GPUs.

Training results. Besides speeding up the inference of
off-the-shelf backbones, our algorithm also has the poten-
tial to expedite training. We report the training hours for
ViT-Base in Table 1. STA cuts the training time in half.
Without modifying the training recipe, the trained model
only drops 0.6 % in Top-1 accuracy. We believe that STA
would be more effective to maintain the performance when
training deeper backbones. We leave it as the future work.

Number of views. To analyze the impact of the number of
test clips on our method, we conduct an experiment by vary-
ing the number of clips and comparing the results with the
baseline ViT-L model. In Table. 2, we show that the relative
performance drop remains constant at approximately 0.1%
regardless of the number of views, when the drop number
is set to r1 = 64. Furthermore, when using a lower value
of r1 = 48, there is no significant decrease in performance
compared to the baseline.

1https://github.com/microsoft/DeepSpeed

Model clips/s Training time Top-1
ViT-B 53 28 hrs 81.2
STA48-ViT-B 96 15 hrs 80.6

Table 1. Comparison on training time on Kinetics-400. We mea-
sure training time on 4 nodes of 8 V100.

Views Drop Number r1

0 48 64 80
2 × 3 83.36 83.21 83.09 82.56
4 × 3 85.10 85.00 84.85 84.35
6 × 3 85.05 85.07 84.84 84.59
8 × 3 84.91 84.93 84.80 84.43
16 × 3 84.91 84.97 84.89 84.48

Table 2. Ablation on the temporal views of test clips.

# of STA GFLOPs Top-1 Location GFLOPs Top-1
2 302 84.5 1,9,17 308 85.0
3 308 85.0 3,11,19 339 85.0
4 305 84.8 5,13,21 370 85.1

Table 3. Ablation on the number of STA blocks and insert location.

Number of STA blocks and insert location We devise
two extra ablation studies shown in Table 3. Our experi-
ments demonstrate that incorporating 3 progressive blocks
at the very first beginning achieves an optimal trade-off.
This approach allows for preferable computation while de-
livering maximal performance.

B. More Visualization
We provide more visualization for our STA on K400

in Figure 1 and SSV2 in Figure 2, which display image
patches that correspond to the tokens retained after three
stages of pruning. We observe that the pruning results align
well with our objective of preserving detail-rich tokens and
resisting temporal redundancy. Specifically, upon examin-
ing the guitar-playing sequence in Figure 1, STA accurately
preserves two partially visible guitars on the wall. Addi-
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tionally, the dropped tokens shown in Figure 2 at different
timestamps are distributed unevenly, preserving the diver-
sity of the video content.
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Figure 1. Visualization of our STA strategy on K400.
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Figure 2. Visualization of our STA strategy on SSV2.


