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1. Bhattacharyya Distance
The Bhattacharyya Distance is a general distance be-

tween two distributions, which can be used to measure the
degree of similarity between two probability distributions.
For two probability distributions P and Q on the same do-
main, the Bhattacharyya distance is defined as:

DB(P,Q) = −ln(BC(P,Q)) (1)

where
BC(P,Q) =

∑√
P (x)Q(x) (2)

is the Bhattacharyya coefficient for discrete probability dis-
tributions or

BC(p, q) =

∫
x

√
p(x)q(x)dx. (3)

for two continuous probability distributions P (dx) ∼
p(x)dx and Q(dx) ∼ q(x)dx.

Thus if p(x) = N (µp, σp) and q(x) = N (µq, σq) then:
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and thus it can be shown that:
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This distance has several desirable properties for training
neural networks. Firstly, it is zero when the two distribu-
tions are identical. Secondly, it is clearly differentiable.

Figure 1. Bhattacharyya Distance for two GMMs: increasing loss
as the second Gaussian increases in difference from the original
reference Gaussian with µ = 0 and σ = 1.

Figure 1 shows the Bhattacharyya Distance as the second
distribution is increasingly removed from the standard nor-
mal distribution reference. The loss is clearly smoothly
varying and also penalises the collapse of distribution - as
σ tends to 0, the loss rapidly increases in magnitude. It
can also be observed that in the case where the σ values
are equal, the Bhattacharyya distance becomes the Maha-
lanobis distance between the two distributions. Thus, the
Bhattacharyya distance is clearly the better choice, as it
characterises differences between the distributions both in
terms of the mean and also the standard deviation.

However, in this work we wish to consider the similar-
ity between two Gaussian mixture models (GMM) with an
arbitrary number of components. Note that for the Bhat-
tacharyya distance, the two distributions being considered
must be of the same type, and thus the reference and target
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GMM distributions must contain the same number of com-
ponents. If we consider two GMMs defined as:

p(x) ∼
M∑
k=1

πpkN (x;µpk, σ
2
pk) (7)

and similarly for q(x), where k is the number of compo-
nents in the GMM and πp are the mixing weights, then if
we calculated DB for the simplest case when k = 2:

DB = −ln
(∫
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√
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))
dx (8)
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This integral is thus the square root of a sum of exponential
functions and, thus, has no closed form solution.

Thus, we utilise the approximation:
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and clearly when P=Q DGMM = 0.

2. Classification
2.1. Dataset

The OrganAMNIST [10] dataset was used for the clas-
sification experiments, which was collated as part of the
MedMNIST [11] dataset. The task is the classification of
images as one of 11 organs with 58,850 samples available
in total. As we wish to explore the effect of domain shift, we
split the data into five ‘sites’, each representing a different
domain shift:

• Site 1: no shift (source site)

• Site 2: reduced intensity range, max intensity clipped
to 0.4 of the original

• Site 3: increased intensity range, max intensity in-
creased to 1.1 of the original

• Site 4: applied Gaussian blurring, 0.25 < σ < 0.75

• Site 5: applied salt and pepper noise, maximum inten-
sity 0.1

Below are figures summarising the dataset. Figure 2
shows the distribution of training labels within the dataset.
Figure 3 shows example images for each new site. Figure
4 shows the confusion matrix from training on each site in
turn and testing on all sites: there is clearly a performance
drop across sites, clearly demonstrating the domain shift.
Finally, Figure 5 shows the result from training on all sites,
in a centralised manner, showing that it is possible to train a
single model which is able to span the variability across the
sites. The code used to generate this data is supplied.

Figure 2. Distribution of labels in the OrganAMNIST dataset.

Figure 3. Example training image for each site for the same class
label, all images are displayed in the same intensity range, using
the minimum and maximum values for the original data.

2.2. Model Architecture

The model architecture was a simple CNN, with 4 con-
volutional layers and 2 maxpooling layers. The code for the



Figure 4. Confusion matrix of test accuracies from training on each
individual site in turn with normal training and comparing to the
other sites.

Figure 5. Accuracy results from training on all sites in a centralised
manner.

architecture can be seen in figure 6. The key architecture
choice is that the embeddings are returned before the ReLU
function, so that they are better represented by a GMM and
do not have a sharp cut off.

Figure 6. Classifier used for OrganAMNIST data. Convolutions
are 2D.

2.3. Comparison Methods

We here detail the implementation details for the com-
parison methods used in this work for the classification task.

As far as possible we used the recommended settings from
the relevant papers, and kept the other implementation as-
pects as close to our proposed approach as possible. All
models were trained with 5 fold cross validation, and the
best fold used for test evaluation.
Source Model: Learning rate = 1 × 10−4 with AdamW
optimiser. Trained with early stopping with a patience of
25 epochs, batchsize of 50 was used.
Centralised Data: Learning rate = 1× 10−4 with AdamW
optimiser. Trained with early stopping with a patience of 25
epochs.
Target finetune: Learning rate = 1 × 10−5 with AdamW
optimiser. Trained with early stopping with a patience of
10 epochs. The label predictor was frozen such that it was
shared across imaging sites.
DeepCORAL [9]: The loss function was imple-
mented using code from the following repository:
https://github.com/SSARCandy/DeepCORAL/
blob/master/models.py. The model was trained
with a learning rate 1 × 10−5 with AdamW optimiser.
Trained with early stopping with a patience of 10 epochs.
FADA [7]: Implemented using the supplied code:
https://drive.google.com/file/d/
1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view.
The model was trained at the local site until convergence
with a patience of 10 epochs. The model was trained with
a learning rate 1× 10−4 with AdamW optimiser.
FedHarmony [4]: Implemented using the supplied
code: https://github.com/nkdinsdale/
FedHarmony. The model was trained at the local site
until convergence with a patience of 10 epochs. The model
was trained with a learning rate 1 × 10−4 with AdamW
optimiser. The recommended hyperparameters were used
apart from for the proximal term which was tuned to the
task: µ = 0.0001, α = 1, β = 100.
Minimise Entropy: Vanilla entropy minimisation. The
model was trained with a learning rate 1 × 10−5 with
AdamW optimiser. The model was trained at the local site
until convergence with a patience of 10 epochs.
SHOT [6]: Three versions were implemented: 1) no
smoothing, using the original source model without the
training modifications, 2) with smoothing cross entropy
used for the source model with a batchsize of 5 and
3) with smoothing cross entropy used for the source
model with a batchsize of 500. Implemented using the
supplied code: https://github.com/tim-learn/
SHOT. The model was trained with a learning rate 1×10−5

with AdamW optimiser. The model was trained at the local
site until convergence with a patience of 10 epochs. The
entropy loss function weight was set to 1 and the class loss
function weight was set to 0.3.
gSFDA [12]: Implemented using the supplied code:
https://github.com/Albert0147/G-SFDA.
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The model was trained using the learning rates specified in
the original work, which vary across model components.
The model was trained at the local site until convergence
with a patience of 10 epochs.
USFAN [8]: Implemented using the supplied
code: https://github.com/roysubhankar/
uncertainty-sfda. The model was trained at the
local site until convergence with a patience of 10 epochs.
The model was trained using their learning rate scheduler.

2.4. Learning Rate

Figure 7. Effect of varying learning rate with varying numbers of
components in the GMM.

Figure 7 shows the effect of changing the learning rate
for differing numbers of components in the GMM fit. It can
be seen that the performance was consistent across a wide
range of learning rate values.

2.5. Results by Site

Results broken down by site are presented in the attached
spreadsheet.

2.6. Features

The features learned by the model for the classification
task can be seen in Fig. 8. It can clearly be seen that many
of the features suggest at least two components, and that the
EM fit is a good representation of the feature distributions.

2.7. Clock Times

Clock times (averaged over 5 runs) for the compared
SFDA methods can be seen in Table 1.

Method Entropy SHOT gSFDAN USFAN SFH1C SFH2C SFH3C
Clock Time 40.9 50.4 81.2 38.2 5.4 7.0 12.0

Table 1. Clock times (s) averaged over 5 runs. SFHXC = SFHar-
mony with X components.

3. Segmentation - CC359

3.1. Dataset

The CC359 dataset contains 359 T1 MRI scans of adult
brains and corresponding brain masks. Details of this
dataset can be found at: https://sites.google.
com/view/calgary-campinas-dataset/home.
The data were collected across six scanners, one each of
a Phillips (P), GE and Siemens (S) scanner of 1.5 and 3T
respectively. We trained the source model on each site in
turn and compared the generalisability of the model to the
other imaging sites, the result of which can be seen in Fig.
9. It is clear that the P15 model generalised least well, and
thus this was chosen as the source site. All other sites were
used as target sites. A PCA of the images showed P15
clustering separately to the other sites, and so this result
was unsuprising. Figure 10 shows an example MRI image
and corresponding brain mask.

3.2. Model Architecture

A 2D UNet was trained on slices of the MRI volumes,
with 4 max pooling layers and 2 convolutional blocks per
depth. An initial feature number of 4 was used. The code
for the architecture can be seen in figure 11. Again, the key
architecture choice is that the embeddings are returned be-
fore the ReLU function, so that they are better represented
by a GMM and do not have a sharp cut off.

3.3. Comparison Methods

We here detail the implementation details for the com-
parison methods used in this work for the CC359 segmen-
tation task. As far as possible we used the recommended
settings from the relevant papers, and kept the other imple-
mentation aspects as close to our proposed approach as pos-
sible. All models were trained with 5 fold cross validation,
and the best fold used for test evaluation.
Source Model: Learning rate = 1 × 10−4 with AdamW
optimiser. Trained with early stopping with a patience of
25 epochs, batchsize of 50 was used.
Centralised Data: Learning rate = 1× 10−4 with AdamW
optimiser. Trained with early stopping with a patience of 25
epochs.
Target finetune: Learning rate = 1 × 10−5 with AdamW
optimiser. Trained with early stopping with a patience of
10 epochs. The label predictor was frozen such that it was
shared across imaging sites.
DeepCORAL [9]: The loss function was imple-
mented using code from the following repository:
https://github.com/SSARCandy/DeepCORAL/
blob/master/models.py. The model was trained
with a learning rate 1 × 10−5 with AdamW optimiser.
Trained with early stopping with a patience of 10 epochs.

https://github.com/roysubhankar/uncertainty-sfda
https://github.com/roysubhankar/uncertainty-sfda
https://sites.google.com/view/calgary-campinas-dataset/home
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Figure 8. The feature distributions for the source test data, learned for the classification task, showing the GMM fit for 2 components.
Single components are represented by the orange and green curves, and black shows the overall GMM fit.

Figure 9. Confusion matrix showing Dice scores from CC359
brain extraction task, training on each site separately and then test-
ing on all sites. P = Phillips, S = Siemens, 15= 1.5T, 3 = 3T.

Figure 10. Example T1 scan and brain mask from CC359 dataset.

Only a batchsize of 5 could be used due to memory
constraints.
FADA [7]: Implemented using the supplied code:
https://drive.google.com/file/d/
1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view.
The model was trained at the local site until convergence
with a patience of 10 epochs. The model was trained with
a learning rate 1× 10−4 with AdamW optimiser.
FedHarmony [4]: Implemented using the supplied
code: https://github.com/nkdinsdale/
FedHarmony. The model was trained at the local site
until convergence with a patience of 10 epochs. The model
was trained with a learning rate 1 × 10−4 with AdamW
optimiser. The recommended hyperparameters were used
apart from for the proximal term which was tuned to the
task: µ = 0.001, α = 1, β = 100.
Minimise Entropy: Vanilla entropy minimisation. The
model was trained with a learning rate 1 × 10−5 with
AdamW optimiser. The model was trained at the local site

until convergence with a patience of 10 epochs.
AdaEnt [1]: Implemented using the supplied code:
https://github.com/mathilde-b/SFDA. The
hyperparameter weighting loss function contributions was
set to 100 following the paper. The model was trained with
a learning rate 1×10−5 with AdamW optimiser. The model
was trained at the local site until convergence with a pa-
tience of 10 epochs.
AdaMI [2]: Implemented using the supplied code:
https://github.com/mathilde-b/SFDA. The
hyperparameter weighting loss function contributions was
set to 100 following the paper. The tissue prior was esti-
mated by averaging the source site labels and then the tissue
ratio was used to create a slice depth dependent tissue prior.
The model was trained with a learning rate 1 × 10−5 with
AdamW optimiser. The model was trained at the local site
until convergence with a patience of 10 epochs.

3.4. Results

Here we present the same results from the main paper
with standard deviations included, in Table 2. These were
originally omitted from the main script for clarity.

4. Segmentation - ABIDE
4.1. Dataset

We use data from the ABIDE dataset [3] for tis-
sue segmentation (white matter, grey matter, CSF).
The MR images from each site were processed us-
ing FSL anat (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/fsl_anat) and the labels used were
those generated by this process. Figure 12 shows an exam-
ple brain and tissue segmentation. Four sites (Trinity, NYU,
UCLA, Yale) were chosen for our experiments, so as to span
both age distributions and subject number. NYU was used
as the source site as it had the largest number of samples
available and spanned the age range represented. Trinity:
49 subjects, NYU: 182 subjects, UCLA: 99 subjects, Yale:

https://drive.google.com/file/d/1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view
https://drive.google.com/file/d/1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view
https://github.com/nkdinsdale/FedHarmony
https://github.com/nkdinsdale/FedHarmony
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Figure 11. UNet model architecture.

Method S T C Information
Communicated

Average Dice
Batchsize 5 Batchsize 50 Batchsize 500

Source Model ✓ x x - 0.832 ± 0.177
Centralised Data ✓ ✓ ✓ All Data 0.983 ± 0.001 0.985 ± 0.001 0.983 ± 0.002
Target Finetune x ✓ ✓ Model Weights 0.981 ± 0.001 0.982 ± 0.001 0.982 ± 0.001
DeepCORAL [9] ✓ x ✓ All Data 0.768 ± 0.183 - -
FADA [7] ✓ x x Model Weights + Features 0.967 ± 0.009 0.964 ± 0.010 0.959 ± 0.011
FedHarmony [5] ✓ x x Model Weights + Statistics 0.965 ± 0.009 0.962 ± 0.011 0.950 ± 0.012
Minimise Entropy x x x Model Weights 0.767 ± 0.176 0.849 ± 0.159 0.951 ± 0.007
AdaENT [1] x x x Model Weights 0.827 ± 0.166 0.817 ± 0.165 0.962 ± 0.007
AdaMI [2] x x x Model Weights 0.820 ± 0.162 0.835 ± 0.176 0.965 ± 0.007
Direct Fit [2] x x x Model Weights 0.648 ± 0.203 0.696 ± 0.171 0.873 ± 0.144
SFHarmony 1 GMM Component x x x Model Weights + Statistics 0.950 ± 0.008 0.949 ± 0.010 0.959 ± 0.009
SFHarmony 2 GMM Components x x x Model Weights + Statistics 0.970 ± 0.010 0.970 ± 0.008 0.970 ± 0.009
SFHarmony 3 GMM Components x x x Model Weights + Statistics 0.972 ± 0.006 0.968 ± 0.012 0.970 ± 0.008

Table 2. Results on the CC359 segmentation task. S = Source data required, T = Target labels required, C = Centralised data. The average
accuracy is the performance across all 5 sites, weighted equally, and is reported for training batchsizes of 5, 50 and 500. Best SFDA method
for each batchsize is in bold.

Figure 12. Example T1 scan and tissue segmentation mask from
the ABIDE dataset. Blue = Cerebrospinal fluid, Yellow = White
matter, Red = Grey matter.

56 subjects.

4.2. Network Architecture

The same network architecture was used as for the
CC359 data, with the initial number of features set to 4.

4.3. Comparison Methods

The same comparison methods were used with the same
settings. For AdaMI we again created a depth dependent
tissue prior.

4.4. Results

Here we present the same results from the main paper
with standard deviations included, in Table 3. These were
originally omitted from the main script for clarity.

5. Regression - ABIDE
5.1. Dataset

We use data from the ABIDE dataset [3] for the age pre-
diction task, following the setup presented in [5]. Four sites
(Trinity, NYU, UCLA, Yale) were chosen for our experi-
ments, so as to span both age distributions and subject num-
ber. Trinity: 49 subjects, 16.7±3.6 years (range: 12-25),
NYU: 182 subjects, 14.7±6.6 (6-39), UCLA: 99 subjects,
12.5±2.2 (8-17), Yale: 56 subjects, 12.2±2.8 (7-17). The
age distribution can be seen in Fig. 13. The images were re-
sized to (128, 240, 160) and normalised to have zero mean
and unit standard deviation.

5.2. Network architecture

The network architecture was a 3D VGG style networks
with a single output node, following [5]. Again, the key
architecture choice is that the embeddings are returned be-



Method S T C Information
Communicated

Average Dice
Batchsize 5 Batchsize 50 Batchsize 500

Source Model ✓ x x - 0.775 ± 0.074
Centralised Data ✓ ✓ ✓ All Data 0.884 ± 0.010 0.885 ± 0.012 0.875 ± 0.006
Target Finetune x ✓ ✓ Model Weights 0.883 ± 0.016 0.884 ± 0.016 0.885 ± 0.016
DeepCORAL [9] ✓ x ✓ All Data 0.523 ± 0.210 - -
FADA [7] ✓ x x Model Weights + Features 0.830 ± 0.042 0.827 ± 0.044 0.825 ± 0.048
FedHarmony [5] ✓ x x Model Weights + Statistics 0.825 ± 0.043 0.810 ± 0.049 0.822 ± 0.044
Minimise Entropy x x x Model Weights 0.570 ± 0.200 0.542 ± 0.211 0.659 ± 0.176
AdaENT [1] x x x Model Weights 0.625 ± 0.168 0.656 ± 0.157 0.682 ± 0.141
AdaMI [2] x x x Model Weights 0.606 ± 0.178 0.657 ± 0.150 0.660 ± 0.154
Direct Fit [2] x x x Model Weights 0.615 ± 0.207 0.803 ± 0.066 0.830 ± 0.047
SFHarmony 1 GMM Component x x x Model Weights + Statistics 0.831 ± 0.045 0.832 ± 0.045 0.831 ± 0.047
SFHarmony 2 GMM Components x x x Model Weights + Statistics 0.832 ± 0.046 0.832 ± 0.046 0.832 ± 0.046
SFHarmony 3 GMM Components x x x Model Weights + Statistics 0.833 ± 0.044 0.832 ± 0.046 0.832 ± 0.046

Table 3. Results on the ABIDE segmentation task. S = Source data required, T = Target labels required, C = Centralised data. The average
accuracy is the performance across all 5 sites, weighted equally, and is reported for training batchsizes of 5, 50 and 500. Best SFDA method
for each batchsize is in bold.

Figure 13. Normalised age distributions for the 4 sites from the
ABIDE dataset.

fore the ReLU function, so that they are better represented
by a GMM and do not have a sharp cut off. The network
architecture can be seen in Fig. 14.

5.3. Comparison Methods

We could not identify any suitable SFDA comparison
methods for regression. All methods were trained with 3
fold cross validation.
Source Model: Learning rate = 1 × 10−4 with AdamW
optimiser. Trained with early stopping with a patience of
25 epochs, batchsize of 16 was used.
Centralised Data: Learning rate = 1× 10−4 with AdamW
optimiser. Trained with early stopping with a patience of 25
epochs.
Target finetune: Learning rate = 1 × 10−5 with AdamW
optimiser. Trained with early stopping with a patience of
10 epochs. The label predictor was frozen such that it was
shared across imaging sites.
DeepCORAL [9]: The loss function was imple-

mented using code from the following repository:
https://github.com/SSARCandy/DeepCORAL/
blob/master/models.py. The model was trained
with a learning rate 1 × 10−5 with AdamW optimiser.
Trained with early stopping with a patience of 10 epochs.
FADA [7]: Implemented using the supplied code:
https://drive.google.com/file/d/
1OekTpqB6qLfjlE2XUjQPm3F110KDMFc0/view.
The model was trained at the local site until convergence
with a patience of 10 epochs. The model was trained with
a learning rate 1× 10−4 with AdamW optimiser.
FedHarmony [4]: Implemented using the supplied
code: https://github.com/nkdinsdale/
FedHarmony. The model was trained at the local site
until convergence with a patience of 10 epochs. The model
was trained with a learning rate 1 × 10−4 with AdamW
optimiser. The recommended hyperparameters were used
apart from for the proximal term which was tuned to the
task: µ = 0.01, α = 1, β = 100.

5.4. Results

Here we present the same results from the main paper
with standard deviations included, in Table 4. These were
omitted from the main script for clarity.
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Figure 14. Regressor used for the age prediction task. Convolutions are 3D.
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