
Lip2Vec: Efficient and Robust Visual Speech Recognition via Latent-to-Latent
Visual to Audio Representation Mapping

(Supplementary Material)

Yasser Abdelaziz Dahou Djilali1,2 Sanath Narayan1 Haithem Boussaid1

Ebtessam Almazrouei1 Merouane Debbah1

1Technology Innovation Institute, UAE 2Dublin City University, Ireland

Here, we present additional quantitative and qualitative
results of the Lip2Vec approach addressing the problem of
visual speech recognition.

A. Varying the ASR Model and Video Encoder
The prior network fθ(·) in our Lip2Vec framework can

be potentially trained with different off-the-shelf (pretrained)
ASR models and video encoders. Here, we evaluate the
performance of our Lip2Vec approach when utilizing VQ-
Wav2Vec [1] as ASR model and VATLM [8] as the video
encoder.
ASR model: The choice of utilizing VQ-Wav2Vec as an
alternate ASR model is motivated by the fact that it is seman-
tically different from Wav2Vec2.0, as it relies on a discrete
latent space. Particularly, the model first encodes an input au-
dio signal as vector quantized (VQ) representations through
a codebook learned on top of the feature extractor. Then,
the resulting discrete representations of the audio are input
to BERT [2], which outputs enhanced representations based
on their respective surrounding context. Finally, an acous-
tic model is utilized to predict text from the BERT output
representations. While pretrained VQ-Wav2Vec and BERT
models are readily avialable1, the associated acoustic model
is not. Therefore, we train a 6-layer transformer decoder (CE
auto-regressive decoding) along with a linear layer (for CTC
decoding) on the BERT representations using the audio-text
pairs in LRS3 training set. This acoustic model obtains 11.2
WER on the LRS3 test set when using CE+CTC decoding.

Utilizing this VQ-Wav2Vec in our Lip2Vec indeed re-
quires changing the prior network training objective to deal
with codebook indices instead of continuous audio repre-
sentations. Thus, we plug a classification head on the prior
output to predict the codebook indices. Hence, we replace
the cosine similarity loss with a standard cross entropy loss.

1https://github.com/facebookresearch/fairseq/
blob/main/examples/wav2vec/README.md#vq-wav2vec

Table A.1: Supervised finetuning vs. latent-to-latent train-
ing. Comparison in terms of WER on LRS3 test set is shown.
The same pretrained video encoder from AV-HuBERT [7]
is finetuned (supervised w/ CE) or utilized for training the
prior network in our Lip2Vec with two different ASR mod-
els: VQ-Wav2Vec and Wav2Vec2.0.

Encoder Pretrain Finetune Supervised Ours: Lip2Vec
S2S w/ CE VQ-Wav2Vec Wav2Vec2.0

Base 433h 30h 51.8 54.0 49.5
1759h 30h 46.1 42.2 40.6

Large 433h 30h 44.8 57.5 55.4
1759h 30h 32.5 33.5 31.2

Table A.2: AV-HuBERT vs. VATLM as video encoder.
Comparison in terms of WER on LRS3 test set is shown.
The pretrained video encoders from AV-HuBERT [7] and
VATLM [8] are utilized for training the prior network in our
Lip2Vec framework. The same ASR model (Wav2Vec2.0) is
utilized for both experiments.

Encoder Pretrain Finetune Video Encoder
VATLM AV-HuBERT

Base 1759h 30h 42.5 40.6

Large 1759h 30h 33.0 31.2

Table A.1 shows the performance of our Lip2vec when using
VQ-Wav2Vec as the ASR model in the low-resource setting
(30h of finetuning data). We observe that it performs com-
parably with supervised finetuning of [7] across different
settings, while requiring similar complexity due to CE+CTC
decoding. The performance of our Lip2Vec when using
Wav2Vec2.0 ASR model with CTC decoding alone is also
shown for ease of comparison.
Video encoder: Here, we evaluate the performance of
Lip2Vec when utilizing a different self-supervised video en-



Table A.3: Impact of varying video length. Comparison is
shown in terms of WER on the LRS3 test set (denoted by
All) along with four subsets of the same test set partitioned
based on the length of the videos. LR and HR denote the
low- and high-resource training with 30h and 433h of LRS3,
respectively. Typically, text prediction is degraded for short
sequences (less than 2 seconds) due to lack of contextual
information during visual feature encoding.

Model All Video Length (in seconds)
0-2 2-4 4-6 > 6

VTP [6] 40.6 46.2 41.5 36.8 29.4
VTP [6] (2676h) 30.7 38.0 31.1 24.5 21.3
Ma et al. [5] 32.3 41.1 31.6 22.5 17.1
Ours: Lip2Vec (LR) 31.2 38.8 31.7 22.7 17.2
Ours: Lip2Vec (HR) 26.0 34.2 24.5 15.9 17.2

coder from VATLM [8]. It is worth mentioning that VATLM
follows the same architecture and training procedure as AV-
HuBERT. However, VATLM additionally utilizes the text
modality during pretraining to enhance the features and
promote for a unified latent space. Table A.2 shows the
performance comparison when utilizing AV-HuBERT and
VATLM encoders for training our prior network in the low-
resource setting. Both encoders are pretrained on 1759h of
LRS3+VoxCeleb2-en data.

Since VATLM utilizes text modality during pretraining,
the resulting encoder representations are likely to be better
aligned to the task of text prediction than for representing
the lip sequences. Despite this, the VATLM encoder-based
Lip2Vec achieves WER scores of 42.5 and 33.0 WER when
using the Base and Large encoder architectures, respectively
and performs comparably with the AV-HuBERT encoder-
based Lip2Vec.

In summary, the aforementioned results and discussion
demonstrate the capability of our Lip2Vec approach to suc-
cessfully adapt to different ASR models and video encoders
for learning the prior network using unlabelled video-audio
pairs. Consequently, the Lip2Vec forms a viable alternative
to video-text supervised finetuning.

B. Additional Results
In this section, we analyse the robustness of our Lip2Vec

approach when varying the video sequence lengths and head
poses of the speaker at test time. This is followed by a
discussion on common failure cases and model consistency.
Varying the Video Length: Table A.3 shows the perfor-
mance comparison on different folds obtained by partition-
ing the LRS3 test set based on the video sequence length.
We observe that shorter videos (less than 2 seconds, i.e., 50
frames) present a bottleneck, which results in performance
degradation of the approaches from their corresponding av-

Table A.4: Impact of head pose. Comparison is shown in
terms of WER on the LRS3 test set (denoted by All) along
with two subsets: Frontal and Extreme, partitioned based on
the head pose of the speaker in the video. LR and HR denote
the low- and high-resource training with 30h and 433h of
LRS3, respectively. Decoding text from partial/occluded lip
motion at extreme head poses is challenging compared to
frontal videos, where the lips are fully visible. See text for
more details.

Model All Frontal Extreme

VTP [6] 40.6 38.5 37.7
VTP [6] (2676h) 30.7 29.4 28.4
Ma et al. [5] 32.3 28.8 33.4
Ours: Lip2Vec (LR) 31.2 25.9 33.4
Ours: Lip2Vec (HR) 26.0 19.4 29.4

erage WER on the whole LRS3 test set (denoted as All
in Table A.3). This is likely due to the lack of rich con-
textual features in shorter video sequences, which leads to
sub-optimal temporal modeling in the video encoder. Con-
sequently, the resulting representations output by the video
encoder are not sufficiently discriminative for decoding the
text correctly. Furthermore, we observe that the SoTA ap-
proaches and our Lip2Vec generally perform better with
longer videos as input, indicating the importance of tempo-
ral modeling of visual features for accurate text decoding.
However, targeting this issue is an important line of research
to follow.
Varying Head Poses: Figure A.1 shows example frames
from videos with frontal and extreme head poses in the LRS3
dataset. For this experiment, we select random 132 videos
from LRS3 test for each of the subsets: frontal and extreme.
We recover the 3D head pose by using a recently introduced
method [3] targeting monocular 3D face reconstruction from
talking face videos. Given a parametric 3D model [4] built
from large datasets of 3D scans of human faces, this ap-
proach regresses the 3D model parameters that best fit to
each image frame. We consider frontal and extreme based
on predefined face angles.

Table A.4 shows the performance comparison between
different approaches on both theses subsets, in terms of WER.
We observe that decoding text from videos with extreme head
poses is challenging since the lip sequences in such videos
are only partially visible, resulting in less discriminative
representations output by the video encoder. Among the
approaches, only VTP achieves comparable results for both
subsets. This is likely due to VTP utilizing the sequence of
full images as input instead of the cropped lip sequences.

In summary, the presented Lip2Vec framework that learns
a prior network using video-audio pair data performs fa-
vorably in comparison to other approaches across different
settings with varying video lengths and head poses.



Figure A.1: Frontal vs. extreme head poses in videos. Top and bottom rows show example frames from videos having
speakers with frontal and extreme (right/left) head poses, respectively. The lips sequences in extreme head poses are not
completely visible and are likely to result in less discriminative representations output by the video encoders.

Figure A.2: Illustration of failure cases. We observe the text decoding to be less accurate in case of short videos (around 1
second), where contextual representation is difficult. Furthermore, rapid variation of poses with blurry frames (top row) and
extreme poses (bottom row) present a challenge for accurate text decoding. It is worth mentioning that although the predicted
sentence for the top row video is not accurate, it has the same lip motion as the target sentence (i.e., they are homophemes).

Failure cases: Figure A.2 illustrates example failure cases
of the Lip2Vec framework. In the top row, the model fails

to adapt to rapid head motion (the speaker turns the head
suddenly from left to right while talking) in a short sequence.



Additionally, the frames appear blurred due to the rapid mo-
tion, which likely affects the visual representations as well.
The predicted sentence in this case, although incorrect, is
still a homopheme and has the same lip motion as the target
text. The bottom row example appears to be more challeng-
ing, since the subject has an extreme head pose all along the
short sequence, leading to a set of poor visual representations
and hence, failed decoding. A potential future direction, be-
yond the scope of the current work, could be to employ head
pose normalization techniques as a preprocessing step to
frontalize the videos and use them as input.
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