
Supplemental Materials for TAPIR: Tracking Any Point with per-frame
Initialization and temporal Refinement

Carl Doersch∗ Yi Yang∗ Mel Vecerik∗† Dilara Gokay∗ Ankush Gupta∗

Yusuf Aytar∗ Joao Carreira∗ Andrew Zisserman∗‡

∗Google DeepMind † University College London
‡VGG, Department of Engineering Science, University of Oxford

Time (s) # points=10 # points=20 # points=50
TAP-Net PIPs TAPIR TAP-Net PIPs TAPIR TAP-Net PIPs TAPIR

frames = 8 0.02 1.3 0.08 0.02 2.4 0.08 0.02 6.2 0.09
frames = 25 0.05 3.4 0.12 0.05 7.2 0.13 0.05 17.9 0.15
frames = 50 0.09 6.9 0.20 0.09 14.0 0.21 0.09 34.5 0.25

Table 1. Computational time for model inference. We con-
ducted a comparison of computational time (in seconds) for model
inference on the DAVIS video horsejump-high with 256×256 res-
olution.

1. Runtime Analysis
A fast runtime is of critical importance to widespread

adoption of TAP. Dense reconstruction, for example, may
require tracking densely.

We ran TAP-Net, PIPs, and TAPIR on the DAVIS video
horsejump-high, which has a resolution of 256 × 256. All
models are evaluated on a single V100 GPU using 5 runs
on average. Query points are randomly sampled on the first
frame with 10, 20, and 50 points, and the video input was
truncated to 8, 25, and 50 frames.

Table 1 shows our results. Both TAP-Net and TAPIR are
capable of conducting fast inference due to their paralleliza-
tion techniques; for the number of points we evaluated, the
runtime was dominated by feature computation and GPU
overhead, and so the runtime is independent of the number
of points, and appears to be scaled better than linear across
different number of frames (though parts of both algorithms
do still scale linearly). In contrast, PIPs exhibits a linear in-
crease in computational time with respect to the number of
points and frames processed. Overall, TAP-Net and TAPIR
are more efficient in terms of computational time than PIPs,
particularly for longer videos and a larger number of points.

2. Extension to High-Resolution Videos
Although TAPIR is trained only on 256 × 256 videos,

it depends mostly on comparisons between features, mean-
ing that it might extend trivially to higher-resolution videos
by simply using a larger convolutional grid, similar to Con-

Kinetics DAVIS
Method AJ < δxavg OA AJ < δxavg OA

TAPIR 256× 256 57.2 70.1 87.8 61.3 73.6 88.8
TAPIR Hi-Res 60.0 72.1 86.7 65.7 77.6 86.7

Table 2. TAPIR at high resolution on TAP-Vid. Each video is
resized so it is at most 1080 pixels tall and 1920 pixels wide for
DAVIS, and 720 pixels tall and 1280 pixels wide for Kinetics.

vNets. However, we find that applying the per-frame initial-
ization to the entire image is likely to lead to false positives,
as the model is tuned to be able to discriminate between
a 32 × 32 grid of features, and may lack the specificity to
deal with a far larger grid. Therefore, we instead create an
image pyramid, by resizing the image to K different resolu-
tions. The lowest resolution is 256× 256, while the highest
resolution is the original resolution, with logarithmically-
spaced resolutions in between that resize at most by a factor
of 2 at each level. We run TAPIR to get an initial estimate
at 256 × 256, and then repeat iterative refinement at ev-
ery level, with the same number of iterations at every level.
When running at a given level, we use the position estimate
from the prior level, but we directly re-initialize the occlu-
sion and uncertainty estimates from the track initialization,
as we find the model otherwise tends to become overconfi-
dent. The final output is then the average output across all
refinement resolutions.

For running TAPIR on high-resolution videos, we parti-
tioned the model across 8 TPU-v3 devices, where each de-
vice received a subset of frames. This allows us to fit DAVIS
videos at 1080p and Kinetics at 720p without careful opti-
mization of JAX code. Results are shown in Table 2. Unsur-
prisingly, having more detail in the image helps the model
localize the points better. However, we see that occlusion
prediction becomes less accurate, possibly because large
context helps with occlusion. Properly combining multiple
resolutions is an interesting area for future works.

3. Open-Source Version
In the previous sections, our goal was to align our deci-

sions with those made by prior models TAP-Net and PIPs,
allowing for easier comparisons and identification of cru-
cial high-level architectural choices. However, in the in-
terest of open-sourcing the most powerful model possi-
ble to the community, we now conduct more detailed hy-
perparameter tuning. This comprehensive model, inclu-
sive of training and inference code, is openly accessible
at https://github.com/deepmind/tapnet. The
open-source TAPIR model introduces some extra model
modifications including (1) the backbone, (2) several con-
stants utilized in the model and training process, and (3) the
training setup.

Regarding the backbone, we employ a ResNet-style ar-
chitecture based on a single-frame design, structurally re-
sembling the TSM-ResNet used in other instances but with
an additional ResNet layer. Specifically, we utilize a Pre-
ResNet18 backbone with the removal of the max-pooling
layer. The four ResNet layers consist of feature dimen-
sions of [64, 128, 256, 256], with 2 ResNet blocks per layer.
The convolution strides are set as [1, 2, 2, 1]. Apart from
the change in the backbone, the TAP features in the pyra-
mid originate from ResLayer2 and ResLayer4, correspond-
ing to resolutions of 64 × 64 and 32 × 32, respectively, on
a 256 × 256 image. It is noteworthy that the dimension-
ality of high-resolution feature map has been altered from
64 to 128. Another significant modification involves transi-
tioning from batch normalization to instance normalization.
Our experiments reveal that instance normalization, in con-
junction with the absence of a max-pooling layer, yields op-
timal results across the TAP-Vid benchmark datasets. Col-
lectively, these alterations result in an overall improvement
of 1% on DAVIS and Kinetics datasets.

Regarding the constants, we have discovered that em-
ploying a softmax temperature of 20.0 performs marginally
better than 10.0. Additionally, we have chosen to use only 3
pyramid layers instead of the 5 employed elsewhere. Con-
sequently, a single pyramid layer consists of averaging the
ResNet output. For our publicly released version, we have
opted for 4 iterative refinements. Furthermore, the expected
distance threshold has been set to 6.

In terms of optimization, we train the model for 50,000
steps, which we have determined to be sufficient for con-
vergence to a robust model. Each TPU device is assigned
a batch size of 8. We use 1000 warm-up steps and a base
learning rate of 0.001. To manage the learning rate, we em-
ploy a cosine learning rate scheduler with a weight decay
of 0.1. The AdamW optimizer is utilized throughout the
training process.

We train TAPIR using both our modified panning dataset
and the publicly available Kubric MOVi-E dataset. Our
findings indicate that the model trained on the public Kubric

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

TAPIR tuned (MOVi-E) 60.2 62.9 73.3 88.3
TAPIR tuned (Panning Kubric) 58.2 62.4 69.1 85.8

Table 3. Open Sourced TAPIR results on TAP-Vid Benchmark.
Comparing to our major reported model, the open sourced version
improves substantially, particularly on RGB-Stacking dataset.

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

TAPIR Model 57.2 61.3 62.7 84.7
+ With RNN 57.1 61.1 59.6 84.6
+ With RNN with gating 57.6 61.1 59.5 84.5

Table 4. Comparison of the TAPIR model with and without
an RNN. We see relatively little benefit for this kind of temporal
integration, though we do not see a detriment either. This suggests
an area for future research.

dataset performs well when the camera remains static.
However, it may produce suboptimal results on videos with
moving cameras, particularly for points that leave the im-
age frame. Consequently, we have made both versions of
the model available, allowing users to select the version that
best suits their specific application requirements.

4. More Ablations
Although our model does not have many extra compo-

nents, both TAP-Net and PIPs have a fair number of their
own design decisions. In this section, we examine the im-
portance of some of these design decisions quantitatively.
We consider four open questions. First, are there simple and
fast alternatives to ‘chaining’ that allow the model to pro-
cess the full video between the query point and every output
frame? Second, is within-channel computation (i.e. depth-
wise conv or the within-channel layers of the Mixer) impor-
tant for overall performance, or do standard dense convo-
lutions work better? Third, do we need as many pyramid
levels as proposed in the PIPs model? Fourth, do we still
need the time shifting that was proposed in TAP-Net? In
this section, we address each question in turn.

4.1. Recurrent Neural Networks

In theory, the ‘chaining’ initialization of PIPs has an ad-
vantage which TAPIR does not reproduce: when the model
has a query on frame tq and makes a prediction at a later
frame to, the prediction at frame to depends on all frames
between tq and to. This may be advantageous if there are
no occlusions between tq and to, and the point’s appear-
ance changes over time so that it becomes difficult to match
based on appearance alone. PIPs can, in these cases, use
temporal continuity to avoid losing track of the target point,
in a way that TAPIR cannot do easily.

Of course, it is unclear how important this is in practice:
relying on temporal continuity can backfire under occlu-
sions. To begin to investigate this question, we made a sim-
ple addition to the model: an RNN which operates across

time, which has similar properties to the ‘chaining,’ which
we apply during the TAP-Net initialization after computing
the cost volume.

A convolutional recurrent neural network (Conv RNN)
is a classic architecture for spatiotemporal reasoning, and
could integrate information across the entire video. How-
ever, if given direct access to the features, it could overfit
to the object categories; furthermore, if given too much la-
tent state, it could easily memorize the stereotypical motion
patterns of the Kubric dataset. Global scene motion, on the
other hand, can give cues for the motion of points that are
weakly textured or occluded. Our RNN architecture aims to
capture both temporal continuity and global motion while
avoiding overfitting.

The first step is to compute global motion statis-
tics. Starting with the original feature map F ∈
RT×H//8×W//8×D, we compute local correlations D ∈
RT×H×W×9 for each feature in frame t with nearby fea-
tures in frame t+ 1:

St,x,y = {Ft,x,y · Ft−1,i,j |x− 1 ≤ i ≤ x+ 1;

y − 1 ≤ j ≤ y + 1}
(1)

Note that, for the first frame, we wrap t − 1 to the final
frame. We pass S into two Conv+ReLU layers (256 chan-
nels) before global average pooling and projecting the result
to Pt ∈ R32 dimensions. Note that this computation does
not depend on the query point, and thus can be computed
just once. The resulting 32-dimensional vector can be seen
as a summary of the motion statistics, which will be used as
a gating mechanism for propagating matches.

The RNN is applied separately for every query point.
The state Rt ∈ RH×W×1 of the RNN itself is a simple spa-
tial softmax, except for the first frame which is initialized
to 0. The cost volume Ct at time t is first passed through a
conv layer (which increases the dimensionality to 32 chan-
nels), and then concatenated with the RNN state Rt−1 from
time t − 1. This is passed through a Conv layer with 32
channels, which is then multiplied by the (spatially broad-
casted) motion statistics P t. Then a final Conv (1 channel)
followed by a Softmax computes Rt. The final output of
the RNN is the simple concatenation of the state R across
all times. The initial track estimate for each frame is a soft
argmax of this heatmap, as in TAPIR. We do not modify the
occlusion or uncertainty estimate part of TAPIR.

Table 4 shows our results. We also show a simplified
version, where we drop the ‘gating’, and simply compute
Rt from Rt−1 concatenated with Ct, two Conv layers, and
a softmax. Unfortunately, the performance improvement
is negligible: with gating we see just a 0.4% improvement
on Kinetics and a 0.2% loss on DAVIS. We were not able
to find any RNN which improves over this, and informal
experiments adding more powerful features to the RNN

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

MLP Mixer 54.9 53.8 61.9 79.7
Conv1D 56.9 60.9 61.3 84.6
Depthwise Conv 57.2 61.3 62.7 84.7

Table 5. Comparison between the layer kernel type in iterative
updates. We find that depthwise conv works slightly better than a
dense 1D convolution, even though the latter has more parameters.

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

pyramid level=5 (TAPIR) 57.2 61.3 62.7 84.7
pyramid level=4 57.5 61.3 61.6 84.9
pyramid level=3 57.9 61.5 63.0 84.8
pyramid level=2 57.2 61.0 61.2 84.4

Table 6. Comparison on number of feature pyramid levels. We
find that the number of pyramid levels makes relatively little dif-
ference in performance; in fact, 3 pyramid levels seems to be all
that is required, and even 2 levels gives competitive performance.

harmed performance. While the recurrent processing makes
intuitive sense, actually using it in a model appears to be
non-trivial, and is an interesting area for future research.

4.2. Depthwise versus Dense Convolution

PIPs uses an MLP-Mixer for its iterative updates to the
tracks, and the within-channel layers of the mixer inspired
the depthwise conv layers of TAPIR. How critical is this de-
sign choice? It is desirable as it saves some compute, but at
the same time, it reduces the expressive power relative to
a dense 1D convolution. To answer this question, we re-
placed all depthwise conv layers in TAPIR with dense 1D
convolutions of the same shape, a decision which almost
quadruples the number of parameters in our refinement net-
work. The results in Table 5, however, show that this is
actually slightly harmful to performance, although the dif-
ferences are negligible. This suggests that, despite adding
more expressivity to the network, in practice it might result
in overfitting to the domain, possibly by allowing the model
to memorize motion patterns that it sees in Kubric. Using
models with more parameters is an interesting direction for
future work.

4.3. Number of Pyramid Layers

In PIPs, a key motivation for using a large number of
pyramid layers is to provide more spatial context. This is
important if the initialization is poor: in such cases, the
model should consider the query point similarity to other
points over a wide spatial area. TAPIR reproduces this de-
cision, extracting a full feature pyramid for the video by
max pooling, and then comparing the query feature to lo-
cal neighborhoods in each layer of the pyramid. However,
TAPIR’s initialization involves comparing the query to all
other features in the entire frame. Given this relatively
stronger initialization, is the full pyramid necessary?

To explore this, we applied the same TAPIR architecture,

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

TAPIR Model 57.2 61.3 62.7 84.7
- No TSM 57.1 61.0 59.4 84.3

Table 7. Comparing the TAPIR model with a version without the
TSM (temporal shift module).

but successively removed the highest levels of the pyramid,
and Table 6 gives the results. We see that fewer pyramid
levels than were used in the full TAPIR model are sufficient.
In fact, 2 pyramid levels saves computation while providing
competitive performance.

4.4. Time-Shifting

One slight complexity that TAPIR inherits from TAP-
Net is its use of a TSM-ResNet [3] rather than a simple
ResNet. TAP-Net’s TSM-ResNet is actually modified from
the original version, in that only the lowest layers of the
network use the temporal shifting. Arguably, the reason for
this choice is to perform some minor temporal aggregation,
but it comes with the disadvantage that it makes the model
more difficult to apply in online settings, as the features for
a given frame cannot be computed without seeing future
frames. However, our model uses a refinement step that
is aware of time. This raises the question: how important is
the TSM module?

To answer this question, we replaced the TSM-ResNet
with a regular ResNet–i.e., we simply removed the time
shifting from its earliest layers, and kept all other architec-
tural details the same. In Table 7, we see that this actually
makes little difference for TAPIR on real data, losing a neg-
ligible 0.1% performance on Kinetics and a similarly negli-
gible 0.3% on DAVIS. Only for RGB-Stacking does it seem
to make a difference. One possible explanation is that the
model struggles to segment the low-texture RGB-Stacking
objects, so the model uses motion cues to do this. Regard-
less, it seems that for real data, the time-shifting layers can
be safely removed.

5. Implementation Details

In this section, we provide implementation details to en-
able reproducibility, first for TAPIR, then for our new syn-
thetic dataset.

5.1. TAPIR

The TSM-ResNet model used in the bulk of experiments
(but not the open-source model) follows the one in TAP-
Net: i.e., it has time-shifting in the first two blocks, and re-
places the striding in later blocks with dilated convolutions
to achieve a stride-8 convolutional feature grid. We use the
output features of unit 2 (stride 8) and unit 0 (stride 4), and
normalize both across channels before further processing.

We use the unit 2 features to compute the cost volume,
using bilinear interpolation to obtain a query feature, before
computing dot products with all other features in the video.
The TAP-Net-style post-processing first apply an embed-
ding convolution (16 channels followed by ReLU) to obtain
an embedding e, followed by a convolution to a single chan-
nel, to which we apply a spatial softmax followed by a soft
argmax operation to obtain a position estimate p0t for time t.
To predict occlusion, we apply a strided convolution to the
embedding e (32 channels) followed by a ReLU and then a
spatial global average pool. Then we apply an MLP (256
units, ReLU, and finally a projection to 2 units) to produce
the logits o0t and u0

t for occlusion and uncertainty estimate,
respectively.

The above serves as the initialization for the refinement,
along with the raw features. Each iteration i produces an up-
date (∆pit,∆oit,∆ui

t,∆Fq,t,i). To construct the inputs for
the depthwise convolutional network, oit and ui

t are passed
in the form of raw logits; Fq,t,i is passed unmodified. Note
that, for versions of the network with a higher resolution,
Fq,t,i comprises both the high-resolution (64-channel) fea-
ture as well as the low-resolution (256-dimensional) fea-
ture, which are concatenated along the channel axis. The
dot products that make up the score maps are passed in spa-
tially unraveled. The final input for pit needs a slight modi-
fication. For pit, PIPs subtracts the initial estimate for each
chunk before processing with an MLP mixer. We cannot
follow this exactly because our model has no chunks; there-
fore, we instead subtract the temporal mean x and y value
across the entire segment, ignoring occlusion. This choice
means that, like it is for PIPs, the input to the depthwise-
convolutional network input is roughly invariant to spatial
shifts of the entire video, at least up to truncation of the
score maps.

Following PIPs, our depthwise convolutional network
first increases the number of channels to 512 per frame with
a linear projection. Then we have 12 blocks, each consist-
ing of one 1× 1 convolutional residual unit, and one depth-
wise residual unit. The 12 blocks are followed by a projec-
tion back down to the output dimension, which is split into
(∆pit,∆oit,∆ui

t,∆Fq,t,i). Both types of residual unit con-
sist of a single convolution which increases the per-frame
dimension to 2048, followed by a GeLU, followed by an-
other convolution that reduces the dimension back to 512
before adding the input. Note that increasing the dimen-
sionality is non-trivial within a depthwise convolutional net-
work: in principle, each output channel in a depthwise con-
volution should correspond to exactly one input channel.
Therefore, we accomplish this by running four depthwise
convolutions in parallel, each on the same input. We ap-
ply a GeLU, and then run a second depthwise convolution
on each of these outputs, and sum all four output layers.
This has the effect of increasing the per-frame dimension

to 2048 before reducing it back to 512, while ensuring that
each output channel receives only input from the same input
channel.

Our losses are described in the main text; we use the
same relative scaling of the Huber and BCE as in TAP-Net,
and the uncertainty loss is weighted the same as the occlu-
sion. Like TAP-Net, we train on 256 query points per video,
sampled using the defaults from Kubric. However, we find
that running refinement on all query points with a batch size
of 4 tends to run out of memory. We found it was effective to
run iterative refinement on only 32 query points per batch,
randomly sampled at every iteration.

5.2. Training Dataset

Our primary motivation for generating a new dataset is
to address a particular degenerate behavior that we noticed
when running the model densely: videos with panning of-
ten caused TAPIR to fail on background points that went
offscreen early in the video. Therefore, we made a minor
modification to the public MOVi-E script by changing the
camera rotation. Specifically, we set the ‘look at’ point to
follow a linear trajectory near the bottom of the workspace,
traveling through the center of the workspace to ensure that
the camera pans but still remains mostly looking at the ob-
jects in the scene.

To accomplish this, we first sample a ‘start point’ a
within a medium-sized sphere (4 unit radius; the cam-
era center itself starts between 6 and 12 units from the
workspace center). We also constrain that the start point
a is above the ground plane, but close to the ground (max
1 unit height). Then we sample a ‘travel through’ point b
in a small sphere in the center of the workspace (1 unit ra-
dius), ensuring that b is also above the ground plane; the
final ‘look at’ path will travel through this point. Finally,
we sample an end point by extending the line from the start
to the ‘travel through’ point by as much as 50% of the dis-
tance between them: i.e., the ‘end point’ c = b+γ ∗(b−a),
where γ is randomly sampled between 0 and 0.5. The final
‘look at’ point travels on a linear trajectory, either from a to
c or from c to a with a 50% probability. We sample 100K
videos to use as a training set, and keep all other parameters
consistent with Kubric.

5.3. Diffusion Models for Animating Still Images

Recent pipelines using diffusion for video generation
have typically used image pretraining, as well as multiple
levels model ‘chaining’, i.e., one model may be trained to
produce low-resolution, low-frame rate videos, another may
be used to fill in gaps between frames, a third may be used
to upsample, and so on. Make-a-video [5], for example, had
four different models, and was pretrained on 2.3B images. It
also uses the same ‘noise’ vector on every image to encour-
age temporal coherence, although this in practice can limit

the variability of background textures across the video. For
simplicity and for computational reasons, in this project we
chain together just two models, and use no image pretrain-
ing. We expect that further model chaining, pretraining, and
larger video datasets would improve performance, but that
is beyond the scope of the current work.

As described in the main paper, our diffusion model con-
sists of two components: a trajectory model, and a video
model. To train both, we first run TAPIR on a large database
of videos, center-cropped to 256 × 256 and clipped to 24
frames. We query TAPIR with a dense, 64 × 64 grid of
query points on the first frame. This provides training data
for both models.

These two models are trained independently: the trajec-
tory model is conditioned on the first frame and is trained
to reproduce the associated trajectories. The video model
is conditioned on both the first frame and the associated
trajectories, and is trained to reproduce the later frames of
the video. We describe the network architecture for each in
turn.

5.3.1 Trajectory Model

The trajectory model first processes the input image with
a modified NFNet [1] F0, modified to output a high-
resolution grid: all layers after the first have striding re-
moved and, to prevent a resulting explosion in memory,
the number of channels in the backbone is capped at 512.
This results in a feature at stride 8, with relatively small re-
ceptive fields; to enable more global reasoning, we apply a
multi-headed self-attention layer with 4 heads and 128 at-
tention channels, resulting in a new feature map with 512
channels at stride 8. The tracks, meanwhile, are at stride 4:
therefore, we upsample the above feature map with a trans-
posed convolution with 256 output channels. To recover
high-resolution information, we also apply a convolution
to the NFNet’s block 0 output (a stride-4 tensor with 256
channels) and add this to the output of the transposed con-
volution. Thus, the final image representation G is a stride
4 tensor with 256 channels.

Our overall diffusion pipeline follows DDPM [2] with
a cosine rule. The input array to be denoised has shape
24 × 64 × 64 × 3, where 24 is the number of frames, and
3 corresponds to x, y, and occlusion. This encodes the
(x, y) positions relative to the first frame, scaled to the range
[−1, 1] (i.e., 1 corresponds to a positive motion of 256 pix-
els, the max possible). Occlusion is unfortunately a binary
value, so we apply a smoothing operation to make it con-
tinuous. Let õt be an occlusion indicator: i.e., 1 if the point
is occluded at time t and -1 otherwise. For each point t,
let t̂ be the nearest time such that õt̂ ̸= õt. We compute
ōt = õt ∗(1−(2/3)|t−t̂|). Thus, this value decays exponen-
tially toward the extreme values 1 and -1 as distance from

a ‘transition’ increases, but it preserves the sign of õt, mak-
ing decoding straightforward. We use ōt as the occlusion
estimate, rescaled to the range (0, .2). This rescaling en-
courages the model to reconstruct the motion first, and then
reconstruct the occlusion value based on the reconstructed
motion.

For each training example, we randomly sample a ‘time’
value τ uniformly between 0 and 1, and we sample a noise
vector ϵ̂ which is the same size as the input array. The loss
is then:

∥x0 − fθ(x0 ∗ cos(τ ∗ π/2) + ϵ̂ ∗ sin(τ ∗ π/2)|G)

Here, fθ is the neural network parameterized by θ. fθ
is a U-Net with self attention, following [6], although we
use only 3 residual blocks per resolution. To apply the con-
ditioning, we follow the conditional group norm formula-
tion [2, 4]. That is, after group norm does mean subtraction
and variance normalization within each group to produce
a normalized output Z, the layer would typically apply a
scale and shift operation. These are replaced with linear
projections of the conditioning G. Prior work, however, as-
sumes that the conditioning is a single vector, i.e., G ∈ RC ,
whereas we have a spatial tensor G ∈ RH//4×W//4×C .
Therefore, we first resize G so that its spatial dimensions
are the same size as Z, and then we apply two 1 × 1 con-
volution layers to create a scale and multiplier that are the
same size as Z.

To visualize the output of this model, we use a patch-
based warping. For a given frame t, the trajectories at time
t tell us where each 4 × 4 patch in the input image should
appear. Therefore, it is straightforward to construct a new
image where each local patch is placed at its correct loca-
tion, using bilinear interpolation to get subpixel accuracy.
However, in practice this will look bad if objects get larger,
e.g., as they approach the camera, as there will be gaps be-
tween patches. To deal with this, we actually warp a larger
patch around each point (8 pixels on a side). When multiple
patches appear covering the same output pixel, we weight
them inversely proportional to their distance from the track
center. This results in a smooth blend between patches that
reveals motion without producing too many artifacts. How-
ever, note that this simple method means that there tend to
be artifacts around edges; e.g., points near object edges will
tend to capture part of the background as well and drag it
along with the object.

5.3.2 Video Model

The second stage of our model produces pixels given trajec-
tories and an initial image. At training time, we use pseudo-
ground-truth trajectories from TAPIR extracted from our
24-frame videos, as well as the initial frame at 256 × 256,

and train the model to reproduce the original 24-frame clip
at full 256× 256 resolution.

Training the model to produce a full clip at the input res-
olution, however, would be prohibitive in terms of memory.
Therefore, at training time, we train our model to recon-
struct a single frame at a time. We rely mostly on the trajec-
tory model to provide temporal coherence, at least for the
image contents that are visible in the first frame. For the
rest of the pixels, we find it is beneficial to also include a
small amount of temporal context from the noisy video.

Therefore, at training time, the model must reconstruct
some frame t. The input is threefold. We include two forms
of ‘conditioning’ computed by warping the input frame,
first in feature space and second in image space. Third, we
input the noisy inputs for frames t − 1 to t + 1. The tar-
get output is the noise residual, i.e., the noise that has been
added to the image.

To compute the feature-space-warped image, we use the
same image encoder that we used for the tracks model,
which produces a feature grid at stride 4. Therefore, for
each position in the feature grid, we have the position where
that feature appears at time t. We use bilinear interpolation
to place the feature at the appropriate location. We keep
track of the number of features that have been placed within
any particular grid cell (specifically, the sum of bilinear in-
terpolation weights) and normalize by this sum, unless the
sum is less than 0.5, in which case we simply divide by 0.5.
This serves as a grid of conditioning features, which we use
in exactly the same way that we used it in the trajectory
prediction network: i.e., it is the conditioning signal for the
conditional group norm.

To compute the image-space warped image, we use al-
most exactly the same warping algorithm that we use for
our visualizations, and concatenate the result to the noisy
frame. However, we find that the model struggles to deal
with the aliasing that occurs when multiple patches over-
lap; with just a single warp, the model cannot tell what is
the contribution of each patch in turn. Therefore, we ac-
tually warp the same patch 5 times. The only difference
between the warps is the way that the blending weight is
calculated. Let pi,j,t be the position of the trajectory be-
ginning at (i, j) in the original image at time t. In the
original warping, the weight for the patch carried by trajec-
tory to any particular pixel p′t (assuming p′t is close enough
to be within the patch) is proportional to 1/d(pi,j,t, p

′
t),

where d is Euclidean distance. The weighting that we
use for the five warps is instead 1/d(pi,j,t + η, p′t), where
η ∈ {(0, 0), (−2, 0), (0,−2), (2, 0), (0, 2)}. Therefore, the
first warp is identical to the warp used in the visualization;
however, the model can use the differences in intensities be-
tween the different warpings to infer the original values for
different patches, and can use this information to ‘undo’ the
aliasing.

We also make a few modifications to the U-Net archi-
tecture. Notably, we reduce the number of residual blocks
per resolution from 3 to 2, and we use self attention only at
the lowest-resolution layers (which are at stride 8). We find
that the memory usage is otherwise prohibitive. We also
find it is beneficial to introduce a gating layer which allows
the lower-resolution pathways of the U-Net to preferentially
make predictions for parts of the image that contain ‘holes’
in the warped image; these are the parts of the image where
higher-level information is most critical to ‘fill in’ the miss-
ing data. Recall that U-Nets combine the lower-resolution,
higher-level feature tensors with ‘skip connection’ tensors
by first upsampling the lower-resolution features via a trans-
posed strided convolution, and then concatenating it with
the ‘skip connection’ tensor. We take the output of this con-
catenation and apply a projection down a single channel; we
interpret this as a logit and apply a sigmoid to obtain a ‘gat-
ing’ value between 0 and 1, with a single channel but the
same spatial shape as the input tensors. We then repeat the
concatenation, but this time, multiply the skip connection
by the ‘gating’ value before concatenating. Therefore, the
model can override the low-level information with higher-
level information if it decides that the lower-level input is
uninformative.

At test time, we use different noise vectors for every
frame. For every iteration of diffusion, we break the noisy
video into the above, per-frame inputs and make a predic-
tion for a single frame. Then we concatenate all outputs and
repeat the process.

We trained both models for roughly 200K iterations with
a cosine learning rate schedule. We use a batch size of 4096
for the trajectory model and a batch size of 256 for the video
model, each time training on a 2 × 2 × 2 TPU-v3 pod. In
practice we performed relatively little tuning of this model
due to its high computational cost; we suspect that further
architectural tuning, as well as larger datasets, will lead to
improved performance.

References
[1] Andy Brock, Soham De, Samuel L Smith, and Karen Si-

monyan. High-performance large-scale image recognition
without normalization. In Proceedings of International Con-
ference on Machine Learning (ICML), pages 1059–1071.
PMLR, 2021.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Proceedings of Neural Information
Processing Systems (NeurIPS), 33:6840–6851, 2020.

[3] Ji Lin, Chuang Gan, Kuan Wang, and Song Han. Tsm: Tem-
poral shift module for efficient and scalable video understand-
ing on edge devices. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020.

[4] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with

a general conditioning layer. In Proceedings of AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

[5] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran
Gafni, et al. Make-a-video: Text-to-video generation without
text-video data. arXiv preprint arXiv:2209.14792, 2022.

[6] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations.
Proceedings of International Conference on Learning Repre-
sentations (ICLR), 2021.

