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1. Introduction
This supplementary material presents: (1) extra ablation

analysis of our approach; (2) visualization results of com-
petitive methods (i.e., DDRNet [7], AICNet [6], SISNet [2])
and CVSformer on NYU [9] and NYUCAD [5] datasets; (3)
code segments of MVFS and CVTr.

Figure 1. Experiment equipment.

MVFS CVTr IoU(%) mIoU(%)
72.9 51.3

✓ 73.2 51.8
✓ 73.6 52.0

✓ ✓ 73.7 52.6
Table 1. Ablation study on MVFS and CVTr. The performances
are evaluated on NYU dataset.

2. Extra Ablation Studies

Analysis of Synthetic View To verify that features synthe-
sized by rotating convolutional kernels can capture multi-
view information of an object, we designed the following
experiments. As in Figure 1, our equipment is a high-
precision rotating platform, and Azure Kinect DK camera

*Co-first authors. The names are listed in alphabetical order.
†Co-corresponding authors.

with pre-calibrated and precise camera poses. We place a
group of objects on the rotating platform and capture RGB
and Depth images of the objects from different perspectives
by controlling the rotation of the platform. During the ex-
periment, we change the camera’s pose by adjusting the dis-
tance and degree of the camera to the platform. The first and
last images in each set are 150 degrees in-between, with 5
degrees between the two adjacent images. Specific infor-
mation about the four sets of images is shown in Figure 2.

RGB images from different views, TSDF, and 2D-3D
projection relationships are fed into CVSformer, which en-
codes the original feature map, and the feature map syn-
thesized by MVFS, and then extracts the features of dif-
ferent samples from them. We use similarity matrix S
to count the similar object features extracted from differ-
ent views and different kernel rotations. We denote a set
of object features with different rotations of the kernel as
K = {Ki | i = 45◦, 90◦, 135◦} and a set of object features
with different views as V = {Vj | j = o◦, 5◦, · · · , 150◦}.
We use the Euclidean distance to calculate the similarity of
the object features across the two sets. If Ki and Vj have
the smallest distance, we add 1 to Si,j . With this approach,
we can obtain the final similarity matrix. Figure 3 shows the
visualization of the similarity matrix, where the darker color
represents the higher similarity of the two features. We can
find that the features obtained by rotating the convolution
kernel are highly similar to the object features at a partic-
ular view degree. The camera poses influence this degree,
which we believe is consistent with the realistic human un-
derstanding of multi-view information. The experiment re-
sults illustrate that the feature maps synthesized by rotating
the convolution kernel can capture the object relationships
for each voxel from multiple views.

Analysis of Multi-View Features In the first two rows of
the Figure 4, we visualize the semantic voxels and the multi-
view feature maps in the rotated kernels. The 0◦, 45◦ and



camera distance: ≈36.24cm

0° 105°90°75°60°45°30°15° 150°135°120°

camera pose:  [-0.6105255 0.7326491 0.3008053 -0.4267296 0.01565829 -0.9042438 -0.6672035 -0.6804264 0.3030833]

camera distance: ≈34.43cm camera pose:  [-0.1868309 0.9778264 0.09460321 -0.4257131 0.0062016 -0.9048369 -0.8853601 -0.2093253 0.4151148]

camera distance: ≈47.27cm camera pose:  [-0.6155796 0.7258047 0.3070329 -0.4246928 0.02266327 -0.9050538 -0.6638507 -0.6875273 0.294293]

camera distance: ≈34.60cm camera pose:  [-0.1879817 0.9767331 0.1032249 -0.4218138 0.01462707 -0.9065645 -0.8869814 -0.2139592 0.4092499]

Figure 2. Captured images. The different color boxes represent the different objects selected.

Rotation 0◦ {0◦,15◦,30◦,45◦} {0◦,30◦,60◦,90◦} {0◦,45◦,90◦,135◦}
IoU(%) mIoU(%) IoU(%) mIoU(%) IoU(%) mIoU(%) IoU(%) mIoU(%)

x

72.9 51.3

73.8 52.3 73.2 52.2 73.7 52.6
y 72.8 52.5 73.5 52.1 73.8 52.2
z 73.4 52.0 73.0 52.1 73.1 52.0

x, y, z 73.2 52.0 73.0 52.1 72.3 52.3
Table 2. Sensitivity to the interval between rotation degrees. We report the performances on NYU.

90◦ kernels together yield feature maps that capture the bed,
floor, and partially-visible furniture. Intuitively, these fea-

ture maps hint at the furniture on the floor behind the bed.
These feature maps fused by CVSformer help to reason the

Rotation 0◦ {0◦,45◦} {0◦,45◦,90◦} {0◦,45◦,90◦,135◦}
IoU(%) mIoU(%) IoU(%) mIoU(%) IoU(%) mIoU(%) IoU(%) mIoU(%)

x

72.9 51.3

73.8 52.1 73.5 52.0 73.7 52.6
y 73.2 52.2 72.3 52.2 73.8 52.2
z 73.0 52.1 73.5 52.2 73.1 52.0

x, y, z 72.7 52.4 73.4 51.7 72.3 52.3
Table 3. Sensitivity to the view number. We report the performances on NYU.

Rotation 0◦ {0◦,45◦} {0◦,45◦,90◦} {0◦,45◦,90◦,135◦}
IoU(%) mIoU(%) IoU(%) mIoU(%) IoU(%) mIoU(%) IoU(%) mIoU(%)

x

72.6 51.1

72.7 50.8 72.6 51.6 73.4 51.1
y 72.3 51.6 72.6 52.3 72.8 52.0
z 72.6 51.1 72.6 51.6 72.8 51.7

x, y, z 72.2 52.1 72.7 51.7 72.9 51.4
Table 4. Ablation study of MVFS with deformable 3D convolution on NYU.



Rotation Degrees IoU(%) mIoU(%) Rotation Degrees IoU(%) mIoU(%)
0◦ 72.9 51.3 0◦ 72.9 51.3

{0◦, 45◦} 73.8 52.1 {−45◦ 0◦} 73.5 52.0
{0◦, 45◦, 90◦} 73.5 52.0 {−90◦,−45◦, 0◦} 73.2 52.5

{0◦, 45◦, 90◦, 135◦} 73.7 52.6 {−135◦,−90◦,−45◦, 0◦} 73.4 51.7
Table 5. Study of symmetric degrees of rotation on NYU.
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Figure 3. Similarity statistics. (a), (b), (c), (d) are the statistics
results for row 1, 2, 3, 4 of Figure 2 respectively.

occluded furniture (see the pink ellipse in the fusion). The
last two rows show the semantic voxels and the feature maps
in the separate kernels without rotation. Though the feature
maps are learned from different latent spaces, they only sup-
press/highlight the bed structure, hardly considering richer
context of objects. The fusion of these feature maps only
captures the bed without reasoning the occluded furniture
(see the right-most pink ellipses), which appears out of the
kernels.

Tabel 1 evaluates the feature maps learned by the sepa-
rate kernels without rotation (see the third row). These fea-
ture maps fused by the cross-view transformer yield lower
performances than our method (see the last row). It demon-
strates the effectiveness of rotating the kernels rather than
learning distinct feature spaces.
Sensitivity to Interval between Rotation Degrees We
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Figure 4. Semantic voxels and feature maps in the rotated kernels
and convolutional kernels

Figure 5. Various number of views. The performances are evalu-
ated on NYU dataset.

experiment with changing the combination of rotation de-
grees. Different combinations yield the corresponding
synthetic-view feature maps. We report the performances in
Tabel 2. By setting small intervals (e.g., 15◦) between the
rotation degrees, the difference between synthetic views is
insignificant, thus providing redundant but useless informa-
tion. Larger interval (i.e., 45◦ by default) improves mIoU
up to 52.6%.

Sensitivity to View Number We use MVFS to synthesize
different numbers of views. Each view is associated with a
rotation degree taken from the set {0◦, 45◦, 90◦, 135◦}. The
results are list in Table 3. More views diversify the context
of objects and lead to better performances. An empirical
observation is that the rotation along the x−axis generally
offers better results (see the first row). Furthermore, we also
experiment with increasing the view number as the Figure 5.



(a) RGB (b) Scene (c) Deformable Kernels (d) Rotated Kernels

Figure 6. Deformable kernel and rotated kernel of specific category in different scenes. From left to right: (a) RGB images, (b) voxelized
scenes, (c) deformable convolution kernels, (d) rotated kernels (0◦ and 45◦). We find that deformable convolution kernels focus more on
the individual object shapes, while rotated kernels cover more 3D locations for yielding richer context.
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Figure 7. Different strategies of learning view tokens in CVTr. The performances are evaluated on NYU dataset.

Empirically, four views (i.e., 0◦, 45◦, 90◦, 135◦) lead to sat-
isfactory results on NYU dataset. More views increase the
complexity of network optimization in a reasonable training
time, slightly degrading the performance.

Analysis of Deformable 3D Convolution In Table 4,
we add the deformable 3D convolution module on top of
MVFS, whose output (i.e., the synthetic-view feature maps)
are fed into CVTr for learning the cross-view object rela-
tionships. It should be noted that the deformable 3D con-
volution degrades IoU and mIoU. As reported in the fourth
column of the first row, mIoU even dropped to 51.1%. Note

that richer context of objects is very important to the voxel-
wise SSC task. However, deformable convolution focuses
more on fitting the individual object shapes (see Figure 6).
Thus, it is less powerful in terms of capturing the diverse
object relationships. In contrast, our convolutional kernels
with controllable rotations achieve more context of the sur-
rounding objects.

Analysis of Symmetric Rotation Degrees In Table 5, we
show the results of applying symmetric degrees in MVFS.
The clockwise- and counterclockwise-rotations of same de-
grees make little difference. This may be because the sym-
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Figure 8. Illustration of different fusion schemes in CVTr. (a) all fusion, where the concatenation of all synthetic-view feature maps are fed
into self-attention. (b) hierarchical fusion, where self attention is computed between two of all synthetic-view feature maps. (c) all-for-one
w.r.t. feature maps, where the concatenation of all synthetic-view feature maps are the key and value of cross attention. (d) all-for-one w.r.t.
tokens, where the concatenated view tokens learned by the transformer encoders are the key and value for feature enhancement.



(a) RGB (b) Ground Truth (c) DDRNet (d) AICNet (e) SISNet (f ) CVSformer

Ceil Floor Wall Window Chair Bed Sofa Table TVs Furn. Objects

Figure 9. Completion results of different methods on NYU.



(a) RGB (b) Ground Truth (c) DDRNet (d) AICNet (e) SISNet (f ) CVSformer

Ceil Floor Wall Window Chair Bed Sofa Table TVs Furn. Objects

Figure 10. Completion results of different methods on NYUCAD.



metric rotations provide less novel information, given the
man-made objects normally with symmetric shapes.

Rotation of Kernel, Feature Map, and Image The ro-
tation of kernel, feature map, and image are three differ-
ent fashions for capturing multi-view context. We focus on
the kernel rotation, which enables an accurate control of the
views for each voxel. Other fashions manipulate all voxels
simultaneously in the feature map or scene. Given a degree
for globally rotating the feature map or scene, the rotated
view for a voxel may be within or beyond the given degree,
thus yielding uncontrollable multi-view information. These
schemes can incorporate. In Table 6, we investigate the ro-
tation of kernel, feature map, and image with or without our
CVSformer that controls the kernel rotation. Each scheme
with CVSformer achieves better performance.

In addition, we consider the effects of random rotation,
which produces unreasonable views of objects (e.g., the
upside-down beds and chairs), thus harming the completion
of the objects in normal views. We randomly choose three
different rotation degrees from the range of [0,π]. The ran-
dom rotation degrades IoU and mIoU from 73.7%, 52.6%
to 73.0%, 51.5%.

Rotation w/ CVSformer w/o CVSformer
IoU(%) mIoU(%) IoU(%) mIoU(%)

kernel 73.7 52.6 73.2 51.8
feature map 73.5 52.1 73.1 51.0

image 72.4 46.4 72.3 46.2
Table 6. Various rotation fashions. Performances on NYU.

Effectiveness of Position Embedding We perform exper-
iments to show the effectiveness of position embedding in
our CVSfomer. As shown in Table 7, we consider the inputs
as a sequence of patches and employ single-dimensional
learnable positional embedding to learn the cross-view fea-
ture maps. The effectiveness of positional embedding is evi-
denced by the performances improvement (0.8% IoU, 0.4%
mIoU) when we use the positional embedding to provide
geometric information.

Depth of Transformer Encoder In Table 8, we change
the depth of transformer encoder for learning view tokens.
We increase the depth from 1 to 8. A modest depth (e.g., 2)
is sufficient for summarizing global semantic information
from the voxelized volumes. It balances both performances
and computation. In comparison, the view tokens learned
by shallower encoder (e.g., when depth is set to 1) contain
less semantic and geometric information. Meanwhile, it is
difficult to optimize too deep encoder (e.g., 5 and 8), which
degrades the performances.

Different Strategies of Learning View Tokens In Table 9,
we experiment with different strategies for learning view to-
kens. We illustrate different strategies in Figure 7. We first
employ a MLP module to learn the view tokens, achieving

Position Embedding IoU(%) mIoU(%)
✕ 72.9 52.2
✓ 73.7 52.6

Table 7. Ablation study of position embedding in CVTr. The per-
formances are evaluated on NYU.

Transformer Encoder IoU(%) mIoU(%) Params
1 73.3 52 2.49G
2 73.7 52.6 2.57G
5 72.9 52.2 2.80G
8 73 52.6 2.95G

Table 8. Various depth of transformer Encoder in CVTr. The per-
formances are evaluated on NYU.

(72.6% IoU, 51.8% mIoU). MLP loses local geometric de-
tails, which is sensitive to the voxel-wise SSC.

As reported in the second and third rows, we use the reg-
ular 3D convolution and self-attention to learn the view to-
kens, respectively. Self-attention slightly outperforms the
regular 3D convolution, because it is good at capturing
long-range dependencies of the whole scene. Yet, it elim-
inates the configuration of the voxelized structure, which
is respected by the regular 3D convolution. The impor-
tance of respecting the voxelized format is evidenced by
the performances improvement up to (73.7% IoU, 52.6%
mIoU) when we combine 3D convolution and self-attention
for learning the view tokens.

Different Fusion Schemes in CVTr In Table 10, we
compare different schemes of fusing the synthetic-view fea-
ture maps in CVTr. Figure 8 shows the details of differ-
ent schemes. We concatenate all synthetic-view feature
maps, which are fed into self-attention for computing an
augmented-view feature map (see “all fusion”). We fur-
ther try to fuse the synthetic-view feature maps hierarchi-
cally (see “hierarchical fusion”). The hierarchical fusion
takes into account the high correlation of adjacent angles
but needing expensive computation.

In the third scheme (see “all-for-one w.r.t. feature
maps”), we concatenate all of the synthetic-view feature
maps to enhance each synthetic-view feature map. This
scheme yields performances (72.9% IoU, 51.6% mIoU)
worse than the first scheme. It evidences that high-
dimensional synthetic-view feature maps contain redundant
information for distracting the information fusion between
multiple views.

Our cross-view fusion (see “all-for-one w.r.t. tokens”)
reduces the computational effort. The cross-view fusion re-
fines the semantic and geometric information contained in
the relatively low-dimensional view tokens, outperforming
other alternatives.

Extend The Method to The Outdoor Scenarios We eval-
uate CVSformer on the SemanticKITTI [1] dataset in the
Table 11. CVSformer outperforms the recent methods UD-



View Token IoU(%) mIoU(%)
MLP 72.2 51.5

convolution 72.6 51.8
self-attention 72.7 52.0

convolution + self-attention 73.7 52.6
Table 9. Various strategies for learning view tokens. The perfor-
mances are evaluated on NYU.

Fusion Scheme IoU(%) mIoU(%)
all fusion 73.0 52.3

hierarchical fusion 73.6 52.4
all-for-one w.r.t. feature maps 72.9 51.6

all-for-one w.r.t. tokens 73.7 52.6
Table 10. Various fusion schemes in CVTr. The performances are
evaluated on NYU.

Net [10], MonoScene [3], and OccDepth [8], which also
rely on low-resolution voxels for semantic scene comple-
tion. From another direction of research, some methods
(e.g., S3CNet [4]) leverage point clouds with more detailed
3D information to improve the completion results on the
outdoor dataset. This direction motivates us to extend CVS-
former in the future, allowing CVSformer to learn richer
multi-view information from point clouds.

Method MonoScene OccDepth UDNet CVSformer S3CNet
mIoU(%) 11.1 15.9 19.5 20.7 29.5
Table 11. We compare CVSformer with recent methods on the test
set of SemanticKITTI.

3. Visualization Results

We provide more visualization results on both NYU [9]
and NYUCAD [5] datasets in Figure 9 and Figure 10, re-
spectively. The compared methods are DDRNet [7], AIC-
Net [6], SISNet [2], and CVSformer. CVSformer achieves
high quality of visual results on SSC.

4. Core Code of CVSformer

We show some of the core code about MVFS and CVTr
in following. First, the overall framework of our CVS-
Former is shown below.

class Network(nn.Module):
’’’
Args:

cls_num (int): Numer of classes.
Default: 12

dim (int): Number of channels.
Default: 256

norm_layer: Normalization layer.
Default: torch.nn.BatchNorm3d

bn_m: BN momentum. Default: 0.1
’’’

def __init__(self, cls_num, dim,
norm_layer, bn_m):
super(Network, self).__init__()
self.segProj = SegProjection()
self.seg_blks = seg_Blocks()
self.tsdf_blks = TSDF_Blocks()
self.encoder = Encoder(dim=dim,

norm_layer=norm_layer, bn_m=bn_m)
self.decoder = Decoder(cls_num,

dim=dim, norm_layer=norm_layer,
bn_m=bn_m)

self.view_num = 4 # view number
self.MVSynthesis =

MVSynthesisBlock(dim=dim,
view_num = self.view_num)

self.m = 75 # resolution of view
tokens

self.CVTransformer =
CVTransformerBlock(dim=dim,
view_num=self.view_num, m=self.m)

def forward(self, seg, tsdf, mapp):
’’’
Iuputs:

seg: 2D Semantic Segmentation
tsdf: voxelized TSDF volume
mapp: 2D->3D mapping relationship

’’’
# project 2D seg result to 3D
segRes = self.segProj(seg, mapp)
seg_fea = self.seg_blks(segRes)
tsdf_fea = self.tsdf_blks(tsdf)
seg_fea = seg_fea + tsdf_fea
ori_fea = self.encoder(seg_fea)

’’’ Multi-View Feature Synthesis ’’’
multi_fea = self.MVSynthesis(ori_fea)
’’’ Cross-View Transformer ’’’
aug_fea =

self.CVTransformer(multi_fea)

out = self.decoder(aug_fea)
return out

Second, we show the datails of MVFS below.

class MVSynthesisBlock(nn.Module):
def __init__(self,

dim=256,num_branches=4):
super(MVSynthesisBlock,self)
.__init__()
self.business_layer = []
self.rotation = Rotation()
self.num_branches= num_branches
self.rotationModule =

KernelRotate()
self.rotationConv1 =

nn.Conv3d(dim, dim,



kernel_size=3, padding=0,
stride=3)

self.rotationConv2 =
nn.Conv3d(dim, dim,
kernel_size=3, padding=0,
stride=3)

self.rotationConv3 =
nn.Conv3d(dim, dim,
kernel_size=3, padding=0,
stride=3)

def forward(self, ori_fea):
b_s2, c_s2, d_s2, h_s2, w_s2 =

ori_fea.shape
points_base_45, points_base_90,

points_base_135, point_base0 =
self.rotation(ori_fea)

weights_45 = compute_weights(
points_base_45)

weights_90 = compute_weights(
points_base_90)

weights_135 = compute_weights(
points_base_135)

ori_fea_r45 =
self.rotationModule(ori_fea,
points_base_45.cuda(),
weights_45.cuda()).reshape(
b_s2, c_s2, 3, 3, -1)

ori_fea_r90 =
self.rotationModule(ori_fea,
points_base_90.cuda(),
weights_90.cuda()).reshape(
b_s2, c_s2, 3, 3, -1)

ori_fea_r135 =
self.rotationModule(ori_fea,
points_base_135.cuda(),
weights_135.cuda()).reshape(
b_s2, c_s2, 3, 3, -1)

ori_fea_r45 =
self.rotationConv1(ori_fea_r45)

.reshape(b_s2, c_s2, d_s2, h_s2,
w_s2)

ori_fea_r90 =
self.rotationConv2(ori_fea_r90)

.reshape(b_s2, c_s2, d_s2, h_s2,
w_s2)

ori_fea_r135 = self.rotationConv3(
ori_fea_r135).reshape(b_s2,

c_s2, d_s2, h_s2, w_s2)
return [ori_fea,

ori_fea_r45,ori_fea_r90,
ori_fea_r135] # 4 view

# MVSynthesis pre before entering cuda
class Rotation(nn.Module):

def __init__(self):
super(Rotation, self).__init__()

def first_neighbor(self, x_y_z_offset

, kernel_size):
x = int(x_y_z_offset[0][0][0]
.item())
y = int(x_y_z_offset[0][0][1]
.item())
z = int(x_y_z_offset[0][0][2]
.item())
neighbor=torch.zeros(kernel_size*
kernel_size*kernel_size,3)
neighbor_num=0
# for neighbor_num in range(27):
for neighbor_x in range(x-1, x+2):

for neighbor_y in range(y-1,
y+2):
for neighbor_z in range(z-1,
z+2):

neighbor[neighbor_num]=
torch.tensor([neighbor_x,
neighbor_y, neighbor_z])
neighbor_num =
neighbor_num+1

return neighbor

def forward(self,featuremap):
length =

np.arange(featuremap.shape[2])
width =

np.arange(featuremap.shape[3])
height =

np.arange(featuremap.shape[4])
a,b,c = np.meshgrid(length,

width, height
, indexing="ij")
x_offset =

torch.FloatTensor(a).view(-1,
1)

y_offset =
torch.FloatTensor(b).view(-1,
1)

z_offset =
torch.FloatTensor(c).view(-1,
1)

x_y_z_offset =
torch.cat((x_offset, y_offset

, z_offset), 1).view(-1,
3).unsqueeze(0).

repeat(featuremap.shape[0],1,1)
kernel_size=3
firstNeighbor =
self.first_neighbor(x_y_z_offset,

kernel_size)

# x-axis rotation matrix
rotation_matrix_45 =

torch.tensor([
[torch.cos(torch.tensor(

np.pi/4)),
torch.sin(torch.tensor(



np.pi/4)),
0],[-torch.sin(torch.tensor(
np.pi/4)),

torch.cos(torch.tensor(
np.pi/4)),0],[0,0,1]])

return neighbor_rotation_45,
firstNeighbor

def compute_weights(points):
# params: points 27*3
# len_d,len_h,len_w,len_l =

points.shape
len_points, len_xyz = points.shape
weights = torch.zeros([len_points,

8], dtype=torch.float32)
for i in range(len_points):

x, y, z = points[i]
fx = torch.floor(x)
fy = torch.floor(y)
fz = torch.floor(z)

xd = x - fx
yd = y - fy
zd = z - fz

weights[i][0] =
(1-xd)*(1-yd)*(1-zd)

weights[i][1] = (1-xd)*(1-yd)*zd
weights[i][2] = (1-xd)*yd*(1-zd)
weights[i][3] = (1-xd)*yd*zd
weights[i][4] = xd*(1-yd)*(1-zd)
weights[i][5] = xd*(1-yd)*zd
weights[i][6] = xd*yd*(1-zd)
weights[i][7] = xd*yd*zd

return weights

class KernelRotate(nn.Module):
def __init__(self):

super(KernelRotate,
self).__init__()

def forward(self, features,
points_base, weights):
return KernelRotateFunction.
apply(features, points_base,

weights)

class KernelRotateFunction(torch.
autograd.Function):

@staticmethod
def forward(ctx, features,

points_base, weights):
features_output =

kernel_rotation.forward(
features, points_base, weights)

ctx.save_for_backward(features,
points_base

, weights)

return features_output

@staticmethod
def backward(ctx, grad_output):

features, points_base, weights =
ctx.saved_tensors
grad = kernel_rotation.backward(

features,
grad_output, points_base, weights)
return grad, None, None

# crucial code about MMVSynthesis in
cuda

__global__ void
GetRotatedFeaturesForwardKernel(
int len_d,
int len_h,
int len_w,
const float *__restrict__ features,
const float *__restrict__ weights,
const float *__restrict__

points_base,
float *__restrict__ features_rotated
){
int batch_index = blockIdx.x;
int channel_index = blockIdx.y;
int index = threadIdx.x;
int stride = blockDim.x;

features += (batch_index * gridDim.y
+ channel_index) * len_d * len_h

* len_w;
features_rotated += (batch_index *

gridDim.y + channel_index) *
len_d * 3 * len_h * 3 * len_w * 3;

for (int j = index; j < len_d *
len_h * len_w; j += stride){
// j: the index of the original

feature
// neightbor: <0 or >len_d *

len_h * len_w-1 -> 0
// neighbor feature

//center coordinates
int f_d = j / (len_h * len_w);
int f_h = j % (len_h * len_w) /

len_w;
int f_w = j % len_w;
//neightbors coordinates
float * neighbors = new float[27

* 3];
for (int k = 0; k < 27; k ++){

neighbors[k * 3 + 0] = f_d +
points_base[k * 3 + 0];

neighbors[k * 3 + 1] = f_h +
points_base[k * 3 + 1];



neighbors[k * 3 + 2] = f_w +
points_base[k * 3 + 2];

}

int len_features = len_d * len_h

* len_w;

for (int m = 0; m < 27; m ++){
int * indexs =

vtx_indexs(neighbors[m * 3
+ 0], neighbors[m * 3 + 1],
neighbors[m * 3 + 2],
len_d, len_h, len_w);

//weight interpolation
features_rotated[j * 27 + m] =

get_feature(features,
indexs[0], len_features) *
weights[m * 8 + 0]

+ get_feature(features,
indexs[1], len_features) *
weights[m * 8 + 1]

+ get_feature(features,
indexs[2], len_features) *
weights[m * 8 + 2]

+ get_feature(features,
indexs[3], len_features) *
weights[m * 8 + 3]

+ get_feature(features,
indexs[4], len_features) *
weights[m * 8 + 4]

+ get_feature(features,
indexs[5], len_features) *
weights[m * 8 + 5]

+ get_feature(features,
indexs[6], len_features) *
weights[m * 8 + 6]

+ get_feature(features,
indexs[7], len_features) *
weights[m * 8 + 7];

delete indexs;
}
delete neighbors;

}
}

Finally, we show the datails of CVTr below.

class CVTransformerBlock(nn.Module):
’’’
Args:

dim (int): Number of channels.
Default: 256

view_num (int): View number of
Multi-View Feature Synthesis.
Default: 4

m (int): Spatial Resolution of View
Tokens. Default: 75

’’’

def __init__(self, dim=256, view_num=4,
m=75):
super(CVTransformerBlock,

self).__init__()
self.view_num = view_num
self.m = m
self.chan_pro =

nn.Conv1d(in_channel=dim*view_num,
out_channel=dim,
kernel_size=3,padding=1)

self.chan_pro_1 =
nn.Conv3d(in_channel=dim*view_num,
out_channel=dim,
kernel_size=3,padding=1)

self.sa_blocks = nn.ModuleList()
for _ in range(self.view_num):

tmp = [SA_Block(
embed_dim=dim, depth_SA=2,

num_heads=8, qkv_bias=True,
m=self.m)]

self.sa_blocks.append(
nn.Sequential(*tmp))

self.conv_blocks = nn.ModuleList()
for _ in range(self.view_num):

tmp = [Conv_Block(embed_dim=dim,
voxel_size=15*9*15, m=self.m)]

self.conv_blocks.append(
nn.Sequential(*tmp))

self.cross_attn_blks =
nn.ModuleList()

for _ in range(self.view_num):
tmp =

[NonCrossAttn_Block(embed_dim
= dim)]

self.cross_attn_blks.append(
nn.Sequential(*tmp))

self.view_token = nn.ParameterList(
[nn.Parameter(torch.zeros(1,

self.m, dim)) for _ in
range(self.view_num)])

self.pos_embed = nn.ParameterList(
[nn.Parameter(torch.zeros(1,

self.m+15*9*15, dim)) for _ in
range(self.view_num)])

for i in range(self.view_num):
trunc_normal_(self.pos_embed[i],

std=.02)
trunc_normal_(self.view_token[i],

std=.02)

def forward(self, x):
’’’
Iuput:

x (list): list of all
synthesis-view feature maps.
Default:



[(B,C,D,H,W),...,(B,C,D,H,W)]
Output:

y: the augmented-view feature
map. Default: (B,C,D,H,W)

’’’
B, C ,D, H, W= x[0].shape
# concat view tokens and patchs
feature_li = []
x_ = [x[i].flatten(2).transpose(1,2)

for i in range(self.view_num)]
for i in range(self.view_num):

tmp = x_[i]
vts =

self.view_token[i].expand(B,
-1, -1)

tmp = torch.cat((vts, tmp), dim=1)
tmp = tmp + self.pos_embed[i]
feature_li.append(tmp)

# self attention to get view tokens
fea_li = [blk(t) for t, blk in

zip(feature_li, self.sa_blocks)]
vt_sa = [fea_li[i][:, 0:self.m ,...]

for i in range(self.view_num)]
# convolution to get view tokens
fea_li = [blk(t) for t, blk in

zip(feature_li, self.conv_blocks)]
vt_conv = [fea_li[i][:, 0:self.m

,...] for i in
range(self.view_num)]

vts = [vt_sa[i] + vt_conv[i] for i
in range(self.view_num)]

vt_g = torch.cat((vts[0], vts[1],
vts[2], vts[3]),
dim=2).transpose(1,2)

vt_g =
self.chan_pro(vt_g).transpose(1,2)

# cross attention
outs = []
for i in range(self.view_num):

tmp = self.cross_attn_blks[i](
x_[i], vt_g)

outs.append(tmp)
y = torch.cat((outs[0], outs[1],

outs[2],
outs[3]),dim=2).transpose(1,2)

y = self.chan_pro_1(y).reshape(
B, C ,D, H, W)

y = y + x[0] # skip conn
return y
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