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(Supplementary Material)

Figure 1. More Qualitative Comparison on ScanNet v2 [3] validation set.

1



Figure 2. The detailed structure of 3D U-Net backbone with submanifold sparse convolution [6].

1. Additional Qualitative Results
In this section, we show some more visualization results of generated pseudo labels on the training set of ScanNet dataset

[3]. As shown in Figure 1, initial instance weak labels are first derived from “one object one point” weak annotations.
Then, the proposed method RWSeg can propagate information to unlabelled points. Generated pseudo labels are compared
with fully annotated ground-truth for semantic segmentation and instance segmentation respectively. The results show our
high-quality pseudo labels have very similar patterns to the actual annotations and contain only minor errors.

2. Network Architecture Details
In this section, we present the detailed structure of our 3D U-Net backbone with submanifold sparse convolution [6] and

self-attention module. The backbone network is originally introduced by Graham [5] and has been widely used for feature
extraction in point cloud segmentation tasks [13, 10, 8, 7, 2, 11]. The core idea of submanifold sparse convolution is to
efficiently process spatially-sparse data, otherwise using normal 3D convolution can be very computationally expensive.

Backbone network In Figure 2, the backbone network takes the sparse voxelized representation of point cloud as input.
The U-Net structure is mainly built based on sparse convolution (SC) layers and submanifold sparse convolution (SSC)
layers. SC(m, f, s) represents a downsampling sparse convolution (SC) layer with feature dimension m, kernel size f and
stride s. Residual connection is used to contain two submanifold sparse convolution (SSC) layers. Deconvolution represents
an inverse operation of sparse convolution (SC). The output of the backbone network is split into the semantic branch and
offset branch. The semantic branch further utilizes a self-attention layer for feature propagation. For offset branch, point
feature vectors are transformed via a two-layer MLP to the dimension of 3, which is then supervised by a regression loss for
predicting the centroid shift vectors.

Self-attention module Figure 3 illustrates the process of representing each supervoxel set V = p1, p2, ..., pi as a super-
point. This is achieved by performing an average pooling operation on both the semantic features S and the point coordinates
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Figure 3. Illustration of self-attention module in semantic branch for feature propagation. ⊕ denotes the broadcasting addition and ⊗
denotes the element-wise multiplication. Rel. Pos. represents the relative positional similarity of input coordinates.

X for all points belonging to the set. Following [15, 17], we first perform linear transformations of the input semantic features
SV to three matrices as query, key, and value (Q,K, V ). Then, matrix A captures the similarity between queries and keys
and also includes encoded positional information for adjustment. This can be written as

Q = SVWQ, K = SVWK , V = SVWV , (1)

A = γ(
QK⊤
√
d

) + δ(XV , XV), (2)

where d is the dimension of Q and V , XV the coordinates of supervoxels, γ is a mapping function via MLP, δ is a
positional similarity function via MLP. The output of self-attention can be formulated as

Attn(SV) = σ(A)(V̄ + δ(XV , XV)), (3)

where σ(·) is a softmax activation function. V̄ denotes a symmetric matrix created by repeatedly expanding V . More details
can be found in the supplementary material.

Lastly, refined semantic features are interpolated to the original size in point cloud. The training process is supervised by
a conventional cross-entropy loss HCE with incomplete labels. We define the semantic loss as

Lsem = − 1

N

N∑
i=1

HCE(yi, ĉi). (4)

where ĉi is the weak semantic label. Unlabelled points are ignored here.

3



Offset loss function Following [8], We use a L1 regression loss and a cosine similarity based direction loss to train the
offset prediction,

Loffset =
1∑
i mi

∑
i

||di − (q̂i − pi)||·mi −
1∑
i mi

∑
i

di
||di||2

· q̂i − pi
||q̂i − pi||2

·mi. (5)

where m = {m1, ...,mN} is a binary mask. The value of mi indicates whether point i is on an instance or not. This
means we only consider foreground points with weak labels for supervision.

3. Ablations on Self-attention Module
In Table 1, we perform ablation study on self-attention module by blocking relative position feature on ScanNet v2 [3].

The structure with relative position feature broadcasting addition to both feature branch and attention branch can bring more
performance gain.

Relative position usage Train Val
Baseline - backbone only 74.6 61.7
None 77.3 64.1
Feature branch only 77.6 64.3
Attention branch only 78.3 65.3
Feature branch + Attention branch 78.9 66

Table 1. Ablations on Self-attention Module

4. Random Walk with multiple Steps
This section explains how to inference the equation as the final steady-state of the random walk algorithm (From Eq.6 to

Eq.7 in original paper).
Random walk algorithm is performed by repeatedly adjusting node vector b via transition matrix A. At t-th iteration, the

adjustment can be expressed as

blt+1 = αAblt + (1− α)bl0, (6)

where bt is the existing node vector derived at the previous random walk step, b0 is the initial node vector, α ∈ [0, 1] is a
blending coefficient between propagated score and initial score.

For random walk with multiple steps, we use t to represent the t-th iteration and Expand Eq. (6) to

blt+1 = (αA)t+1bl0 + (1− α)

t∑
i=0

(αA)ibl0. (7)

Applying t → ∞, since α ∈ [0, 1], the first term in Eq. (7) turns into

lim
t→∞

(αA)t+1bl0 = 0. (8)

For the second term with matrices can be expanded as

lim
t→∞

t∑
i=0

(αA)ibl0 = (I − αA)−1bl0, (9)

where I is the identity matrix. Thus, the final steady-state of random walk algorithm can be written as

bl(∞) = (1− α)(I − αA)−1bl0. (10)
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Figure 4. Illustration of competing mechanism in CRW. This example shows the effect of competition on two different nodes (x3 in red,
y3 in purple).

5. Competing Mechanism in CRW
For illustrative purposes, we present an example in Figure 4. In this case, the foreground category consists of three instance

graphs, each with a distinct seeding point marked in green, blue, and yellow, respectively. Node x3 (in red) has two nodes
in the same position, x1 and x2. At step t, their node scores are determined by their overall distance to the seeding points.
Since x1 is far from the seeding points marked in green, its score will be low after a random walk step, whereas x3, which is
closer to the seeding points marked in yellow, will have a higher score. After applying SoftMax normalization to the scores
of x1, x2, and x3, the output score for x3′ at step t+ 1 will be high, as it faces less competition from the other two nodes.

Similarly, we have a node y3 with two same-positioned nodes, y1 and y2, placed in the center of three instances. At step
t, the scores of y1, y2, and y3 are all high. However, during normalization, y3 receives a strong repulsive effect from y1 and
y2. Thus, the output score y3′ at step t+ 1 will be low.

Finally, the proposed algorithm compares the node scores at step t+1. In this case, the node x3′ will have a higher priority
to be grouped into seeds than y3′. This is because node x3′ is highly likely from the instance in yellow, whereas there is
lower confidence in y3′. Therefore, we leave this node to be grouped in the later steps.

6. Ablations on hyperparamters in CRW
In Table 2, we show the experimental results with varying hyperparameters for the competing mechanism in CRW. The

considered baseline is the proposed baseline random walk algorithm, which is represented by t2max = 0.
The table illustrates that a lower update percentage θ typically leads to better results but requires more iterations t2max,

as it gradually groups the most confident points with our competing mechanism. The improvements over the random walk
baseline are consistently observed. As discussed in the paper, the extent of the improvement depends on the distribution of
the dataset. Notably, the proposed design in CRW is particularly effective in solving challenging cases, such as those with
compacted objects of the same class.
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Update percentage θ Iteration number t2max AP (chair) AP (bksf)
N.A. 0 64.2 48.1
80% 5 66.7 (+2.5) 49.9 (+1.8)
50% 5 67.4 (+3.2) 52.3 (+4.2)
20% 5 67 (+2.8) 53.4 (+5.3)
20% 20 67.3 (+3.1) 54.4 (+6.3)
10% 50 67.3 (+3.1) 55.1 (+7.0)

Table 2. Experiments with different CRW hyperparameters on ScanNet v2 [3]

Figure 5. Limitations of RWSeg on S3DIS [1] dataset. (a) generated supervoxels (b) initial instance weak labels (c) generated instance
pseudo labels (d) ground-truth instance labels

7. Additional Analysis in CRW
After conducting experiments with various values of hyperparameters for t1max and α, we have observed that our al-

gorithm can converge after just a single random walk step. Further increasing the iteration number of t1max only results
in marginal improvements. We argue that the fully connected graph used in our algorithm has a wide influence field. This
means that it can exert its influence over a large area, and consequently, reduces the need for multiple random walk steps.

Hyperparameter α ∈ [0, 1] is used to control the trade-off between propagated node values and initial node values. Intu-
itively, it prevents deviating too fast from initial segmentation values. In our experiments, different values of α create a minor
influence on the final converged results (less than 0.2% in mAP). However, if we set the value of α to 1 to remove the effect
from initial values, the performance of random walk is dropped by 1% in mAP.

8. Limitations of RWSeg
In S3DIS [1] dataset, some background stuff such as walls, ceilings, boards are also treated as instances by their setting.

As shown in Figure 5 (d), walls are intentionally labeled as separate instances, even though they are part of the background.
Additionally, these walls can vary greatly in size, which poses a challenge for our method. Our method is primarily designed
for common instance types and may struggle to make accurate predictions on these cases, especially with limited initial weak
labels. In practice, one possible solution is to use surface normals as a clue and apply unsupervised plane estimation methods.
However, this is beyond the scope of this work and goes beyond our objectives.
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9. Comparisons between Feature Propagation Methods
Graph Neural Network (GNN) is a widely used message passing network for feature propagation. It usually iteratively

updates the representation of a node by aggregating and fusing information from its local neighbors. A major advantage of
self-attention over GNN is its global receptive field.

Besides, some graph propagation mechanisms require minimizing a separated pairwise energy function, such as condi-
tional random field (CRF) [9] loss. Whereas our self-attention module can be directly integrated after a CNN-based backbone
and supervised by the original loss functions.

10. Implementation of RWSeg
The license information of assets used in our paper are listed in Table 3. Our code will be available on the Github once

the paper is accepted.

Asset License websites
Pytorch [14] https://github.com/pytorch/pytorch/blob/master/LICENSE

SparseConvNet [5] https://github.com/facebookresearch/SparseConvNet/blob/main/LICENSE
Mesh-Segmentator [4] http://cs.brown.edu/people/pfelzens/segment/index.html

Supervoxel-3D [12] https://github.com/yblin/Supervoxel-for-3D-point-clouds
PointGroup [8] https://github.com/dvlab-research/PointGroup/blob/master/LICENSE
PtXFMR [16] https://github.com/lucidrains/point-transformer-pytorch/blob/main/LICENSE

ScanNet dataset [3] https://github.com/ScanNet/ScanNet/blob/master/LICENSE
S3DIS dataset [1] http://buildingparser.stanford.edu/dataset.html

Table 3. The assets used in the paper and their corresponding license websites
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