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Due to the limited space, we here report more experi-
mental results and technical details which are not included
in the paper:

• The generalizability of the proposed dynamical knowl-
edge distillation strategy on the pre-trimmed short-
duration video dataset (Section 1).

• Further investigations on the performance of the
feature-based knowledge and similarity-based knowl-
edge distillations, respectively (Section 2).

• Studies on dual learning in terms of the hyper-
parameter β and complementarity analysis (Section 3).

• Comparison in terms of time complexity and memory
consumption (Section 4).

• More implementation details of our method (Section
5).

1. Resutls on pre-trimmed short-duration
video dataset

Recall that the previous experiments are all conducted
on untrimmed long videos. To verify the generalizability
of the proposed dynamical knowledge distillation strategy,
we conduct experiments on a pre-trimmed short-duration
dataset, i.e. MSR-VTT [11], in the context of traditional
T2VR. We adopt Dual Encoding [3] as our baseline, con-
sidering its source code released and has been widely used
as the baseline in T2VR. As in Table 1, by using our pro-
posed dynamical knowledge distillation strategy, Dual En-
coding [3] achieves a further performance gain. Besides,
our dynamical knowledge distillation still outperforms the
fixed counterpart that uses a fixed weight during the dis-
tillation. The results not only verify the generalizability of
the proposed dynamical knowledge distillation strategy, and
again confirm its advantage over the fixed distillation.

*Both authors contributed equally to this work.
†Corresponding author: Baolong Liu (liubaolongx@gmail.com)

Table 1. The effectiveness of our dynamical knowledge distilla-
tion strategy for traditional T2VR. We adopt Dual Encoding as the
baseline method.

Distillation R@1 R@5 R@10 R@100 SumR
✗ 10.5 28.4 38.9 89.5 167.2

✓(Fixed) 11.1 30.0 41.0 89.2 171.3
✓(Dynamic) 11.7 30.9 42.0 91.8 176.4

Table 2. Performance comparison of similarity-based distillation
and feature-based distillation with various losses, i.e. MSE and KL
divergence loss on ActivityNet. The similarity-based distillation
with the KL loss performs the best.

ActivityNet-Captions
R@1 R@5 R@10 R@100 SumR

Similarity-based MSE 6.9 22.5 35.3 77.1 142.1
KL 8.0 25.0 37.5 77.1 147.6

Feature-based MSE 6.6 22.2 34.5 75.7 138.9
KL 6.8 22.3 34.6 75.6 139.2

Table 3. Performance comparison of similarity-based distillation
and feature-based distillation with various losses on TVR.

TVR
R@1 R@5 R@10 R@100 SumR

Similarity-based MSE 13.7 33.4 44.6 83.6 175.4
KL 14.4 34.9 45.8 84.9 179.9

Feature-based MSE 13.6 32.7 43.9 83.2 173.4
KL 14.0 33.3 44.2 83.6 175.0

2. Similarity-based Distillation vs. Feature-
based Distillation

Although knowledge distillation is conducted in many
tasks [6,10] mainly by transferring features from the teacher
model to the student model. Our experiment results show
that, in PRVR, guiding the student model by constraining
the consistent semantic similarity distributions between the
teacher-student models is more effective.

Table 2 and Table 3 summarize the comparison results
of similarity-based and feature-based distillations on Activ-
ityNet [7] and TVR [8]. It is noticed that the similarity-
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Table 4. Complexity comparison in terms of computation overhead at the inference stage and memory consumption at the training stage. All
models utilize the same vision backbone. Note that the computation cost excludes the vision backbone and RoBERT. For a comprehensive
comparison, we also report the performance on ActivityNet and TVR.

Text backbone Model FLOPs (G) Memory (MiB) ActivityNet TVR

Graph-based HGR [1] 2.96 8555 107.0 50.1
DL-DKD (Ours) 1.01 4229 125.4 103.6

Bi-GRU
DE [3] 5.24 5837 121.7 123.4

DE++ [4] 5.30 3515 121.7 128.3
DL-DKD (Ours) 0.98 4057 137.3 145.1

RoBERTa

RIVRL [5] 8.64 4809 117.8 135.6
XML [8] 0.80 2451 128.4 155.1

ReLoCLNet [12] 0.96 2673 126.6 157.1
MS-SL [2] 1.22 5349 140.1 172.4

DL-DKD (Ours) 1.04 4455 147.6 179.9
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Figure 1. The influence of hyper-parameter β that balances the
similarities obtained by the inheritance and exploration branches.

based distillation outperforms the feature-based distillation
with clear margins. Additionally, for distillation losses, we
compare Kullback–Leibler (KL) divergence loss we used to
the Mean Square Error (MSE) loss. As shown in the two
tables, the KL divergence loss consistently performs better
than that of MSE loss. On the whole, we employ similarity-
based distillation and the KL loss in this work.

3. Studies on dual learning

Influence of the hyper-parameter for two-branch in-
ference Fig. 1 shows the influence of hyper-parameter β in
Eq.9 of our paper. Note that β = 0 indicates that only the
similarity obtained inheritance branch is employed, while
β = 1 indicates using the exploration branch counterpart.
The inheritance branch consistently outperforms the explo-
ration one on both datasets, showing the benefit of learning
knowledge from the teacher model. The best performance is
achieved at β of 0.3, where the inheritance branch is dom-
inated for the final similarity. It is worth noting that our
proposed model is not very sensitive to beta, as we find that
the proposed method holds state-of-the-art (SOTA) results
on both ActivityNet and TVR datasets when beta is in the
range from 0 to 0.7 (as shown in Figure 1).

Comparison to two-branch baselines. In this experi-
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Figure 2. Performance comparsion to two-branch baselines of
varying hyper-parameter β.

ment, we tune β (Eqn. 9) for the double-branch baselines,
i.e., Dual-exploration and Dual-inheritance. The results are
summarized in Fig. 2. With the sameβ, our model consis-
tently performs better, which further demonstrates the ben-
efit of using two hybrid branches.

4. Model Complexity

Table 4 summarizes the model complexity comparison
in terms of time complexity and memory consumption, and
their corresponding performance on ActivityNet and TVR.
For a specific method, its time complexity is measured as
FLOPs it takes to encode a given video-text pair. For a
more fair comparison, we compare previous works using
the same text backbone. Our model has comparable FLOPs
and memory usage, but gives better performance.

Additionally, it is worth noting that although our model
has two branches, they utilize the same vision and text back-
bones, and only the encoder headers are doubled. More-
over, as the majority of the computation cost is in the vision
(222G FLOPs) and text backbones (79G FLOPs), the com-
putation cost only increases 0.3% when extending from one
branch to two branches.



5. Implementation Details

The dimension sizes of the video features extracted by
the pre-trained CNN model of the ActivityNet-Captions and
TVR datasets are 1024 and 3072, respectively. The dimen-
sions of all the above features are linearly reduced to 384
further for the convenience of the Transformer’s (384 hid-
den sizes, 4 attention heads) feature encoding. For a textual
query, we employ the pre-trained Roberta [9] to extract a
feature with 1024 dimension firstly, reduce the dimension
of the feature to 384 further, and then feed the feature to a
Transformer (384 hidden sizes, 4 attention heads) for fea-
ture encoding. For different decay strategies, we empiri-
cally set the k to 0.95 and 800 for the exponential decay and
Sigmoid decay, respectively. For the linear decay strategy
function, we set the parameters k and b to -0.01 and 1, re-
spectively. We utilize an Adam optimizer with a mini-batch
size of 128 for model training.
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