
Appendix for EMQ: Evolving Training-free Proxies for Automated Mixed
Precision Quantization

Peijie Dong1† Lujun Li2† Zimian Wei1 Xin Niu1* Zhiliang Tian1 Hengyue Pan1

1 National University of Defense Technology, 2 HKUST
1{dongpeijie, weizimian16, niuxin, tianzhiliang, hengyuepan}@nudt.edu.cn, 2lilujunai@gmail.com

In this appendix, we provide additional details and in-
formation about EMQ, including related works, the MQ-
Bench-101 dataset used for evaluation, computation graph
details, and the evolving algorithm. We also provide more
information on the routine, Weisfeiler-Lehman test, conflict
awareness, naive invalid check, and operation sampling pri-
oritization. Additionally, we analyze the iterations and pop-
ulation of the algorithm and present more ablation studies,
including sensitivity analyses of batch size and seeds, as
well as primitive operations. The appendix serves as a com-
prehensive reference for those interested in understanding
and implementing the EMQ algorithm.

A. Additional Related Works

A.1. Mixed-Precision Quantization.

Quantization [24, 9, 27, 3] has been widely investigated
as effective techniques [4, 14, 19, 13, 12, 15, 16] to accel-
erate the inference phase of neural networks by converting
32-bit floating-point weight/activation parameters into low-
precision fixed-point values. However, the contribution of
each layer to the overall performance is to varying extents,
and mixed-precision quantization [35, 21, 37, 38, 6, 5, 2]
has been proposed to achieve a better trade-off between ac-
curacy and complexity by assigning different bit-precision
to different layers. Existing mixed-precision quantization
methods can be classified into four categories: reinforce-
ment learning-based approaches [21, 35, 7], evolutionary
algorithm-based approaches [36], one-shot approaches [37,
10, 8] (including differentiable search approaches), and
zero-shot approaches [6, 5, 29, 22] (also known as heuristic-
based methods). Reinforcement learning-based approaches,
such as HAQ [35], use hardware feedback to search the bit-
precision in discrete space. Evolutionary algorithm-based
approaches, such as APQ [36], jointly search the pruning
ratio, the bitwidth, and the architecture of the lightweight
model from a hypernet.

However, these search-based methods require an ex-

*Corresponding author, † equal contribution.

Figure 7. EMQ Search Space Structures: Three types of computa-
tion graph are shown for the EMQ search space. Dotted lines rep-
resent aggregation operations, while solid lines represent connec-
tions between nodes. (a) Sequential structure performs unary op-
erations in a linear order. (b) Branched structure takes two branch
inputs, applies various unary operations, and performs binary op-
erations. (c) Directed Acyclic Graph (DAG) based structure takes
two branch inputs and each node aggregates the statistics from all
of its predecessors.

tremely large amount of computational resources and are
time-consuming due to the exponential search space. One-
shot methods, such as DNAS [37] and Adabits [10], al-
leviate the searching problem greatly by constructing a
supernet or hypernet where each layer consists of a lin-
ear combination or parallel blocks of outputs of different
bit-precisions, respectively. Nevertheless, a differentiable
search for mixed-precision quantization [37, 8] still needs
a large amount of time due to the optimization of the large
hypernet.

To address the issue of bit-precision selection, heuris-
tic criterion-based methods utilize zero-cost quantization

Figure 8. Crossover process for branched structures. A subtree
crossover strategy is employed for the two parent structures, where
a random subtree is selected from each parent and exchanged to
create two new offspring structures. The glowing border indicates
the selected branch.

proxies to rank the importance of layers. One approach
is the Hessian-based quantization framework, which uses
second-order information as the sensitivity metric. For in-
stance, HAWQ [6] measures the sensitivity of each layer us-
ing the top Hessian eigenvalue and manually selects the bit-
precision based on the relative sensitivity. HAWQ-V2 [5]
proves that the average Hessian trace is a better sensitiv-
ity metric and proposes a Pareto frontier-based method for
automatic bit-precision selection. Intrinsic zero-cost prox-
ies are also developed to handle mixed-precision quantiza-
tion. QE Score [29] evaluates the entropy of the last out-
put feature map without training, representing the expres-
siveness. OMPQ [22] proposes an Orthogonality Metric
(ORM) that incorporates function orthogonality into neu-
ral networks and uses it to find an optimal bit configuration
without any searching iterations.

The hand-crafted proxies used in previous works re-
quire expert knowledge and are often computationally inef-
ficient [6, 5, 22]. These works suffer from major limitations.
First, estimating the average Hessian trace using an implicit
iterative approach based on the matrix-free Hutchinson al-
gorithm [1] can lead to computational excesses and unstable
iterative results for large-scale models. Second, the auto-
matic bit-precision selection can only yield sub-optimal so-
lutions, as the constraint space of the optimization problem
is limited. For example, HAWQ-V2 [5] considers only one
constraint on memory footprint when drawing the Pareto
frontier of accuracy perturbation and model size, limiting
the solutions to local optima in low-dimensional spaces. To
overcome these challenges, we commence by benchmark-
ing the existing zero-cost quantization approaches and aim
to automate the process of designing zero-cost quantization
proxies using techniques inspired by AutoML-zero [28].
Our objective is to automatically search for the most effec-
tive training-free quantization proxy, capable of achieving
competitive results with hand-crafted solutions.

A.2. Zero-cost Proxies for NAS

Recently, research has been focused on zero-shot/zero-
cost neural architecture search (NAS), which estimates the
performance of network architectures using zero-cost prox-
ies based on small batches of data. Zero-shot NAS outper-
forms early NAS since it can estimate model performance
without the need for complete training and training of super-
networks in a single NAS, and without the need for forward
and backward propagation of neural networks, which makes
the entire process cost negligible. Zero-shot NAS is classi-
fied into two types: architecture-level and parameter-level
zero-shot NAS.

(1) Architecture-level zero-shot NAS evaluates the dis-
criminative power of different architectures through in-
ference. For example, NWOT [23] found that better-
performing models can better distinguish the local Jacobian
values of different images and proposed an indicator based
on the correlation of input Jacobian for evaluating model
performance. EPE-NAS [20] proposed an index based on
the correlation of Jacobian with categories. ZenNAS [17]
evaluates the candidate architectures with the gradient norm
of the input image as a ranking score. MAE-DET [30] esti-
mates the differential entropy of the last feature map to rep-
resent the network’s expressiveness based on the maximum
entropy theory [26].

(2) Parameter-level zero-cost NAS aims to evaluate and
prune redundant parameters from neural networks. Sev-
eral indicators have been proposed for this purpose, includ-
ing GradNorm [25], Plain [25], SNIP [11], GraSP [34],
Fisher [33], and Synflow [32]. These indicators evaluate
the importance of each parameter in the network and rank
them based on their values.

While both types aim to alleviate the computational bur-
den of traditional NAS, parameter-level zero-shot NAS has
gained more attention due to its similarity with existing MQ
proxies. Zero-cost proxies operate at the parameter level
and are useful in measuring the sensitivity of each layer in
a neural network. Parameter-level zero-cost proxies offer a
more fine-grained approach to evaluating the performance
of different network architectures, which can be used to op-
timize the overall performance of the system. Thus, this
approach is of great value to the development of efficient
and effective neural architectures. Inspired by the existing
MQ proxies, we adopt the zero-cost proxies in neural ar-
chitecture search to measure the sensitivity of each layer by
weighting the bit-width.

A.3. Revisit the Zero-cost Proxies for Mixed-
precision Quantization

There are four types of input for the zero-cost quantiza-
tion proxies, which are Hessian, activation, gradient, and
weight. The notations are as follows: L denotes the loss
function of a neural network, which measures the discrep-

Figure 9. Mutation process for branched structures. Nodes are ran-
domly selected and the corresponding operation would be mutated
with random sampled unary operations. The glowing border indi-
cates the selected node.

ancy between the predicted outputs and ground-truth labels.
θ represents the parameter of a neural network, which is
optimized through back-propagation with the aim of min-
imizing the loss function. H denotes the Hessian matrix,
which describes the curvature of the loss function around a
particular parameter configuration. F or z is the activation
function, which transforms the input signal into the output
signal of a neuron. i is used to denote the i-th layer of a
neural network. || · ||F denotes the F-normalization, which
normalizes a matrix by its Frobenius norm. Finally, Tr de-
notes the trace of a matrix, which is the sum of its diagonal
elements.

(1) Hessian as Input. Hessian Matrix represents the
second-order information. Evidence [6] shows that the
eigenvalues of the Hessian can measure the sensitivity of
a specific layer of a neural network. The highest Hessian
Spectrum is proposed in HAWQ [6] as shown in Equ. 14,
with which to decide the order of finetuning blocks.
where H is the Hessian matrix, λi(H) denotes the ith eigen-
value of H , and n is the dimension of H . The curly braces
{·} denote a set, and the subscript i = 1 indicates that the
set starts with the first eigenvalue, while the superscript n
indicates that the set ends with the n-th eigenvalue.

spectrum(H) = max
i

{λi(H)} (14)

HAWQv2 [5] points out the drawbacks of HAWQ for it
only focuses on the top eigenvalue but ignores the rest of the
Hessian spectrum. Instead, HAWQv2 adopts the average
hessian trace as the MQ proxy as shown in Equ. 15, where
n is the number of Hessian matrices being averaged, tr(Hi)
denotes the trace of the ith Hessian matrix, and 1

n

∑n
i=1

represents the average over all n matrices.

trace(H) =
1

n

n∑
i=1

tr(Hi) (15)

(2) Activation as Input. Taking the activation as in-
put, OMPQ [22] proposed the network orthogonality as
the zero-cost proxy, which can correlate with the accuracy
with different quantization configurations. If a neural net-
work with N layers, the activation from different layers are
{F}Ni . Then the orthogonality metric is shown in Equ. 16.

orm(F) =
||FT

j Fi||2F
||FT

i Fi||2F ||FT
j Fj ||2F

(16)

QE Score (Quantization Entropy Score) [29] regard neu-
ral network as an information system, propose an entropy-
driven zero-cost proxy to measure the expressiveness of bit
configurations. The equation is shown in Equ. 17,

qescore(F) =

L∑
l=1

log

[
Clσ

2σ2
act

σ2
act

]
+ log(σ2

act) (17)

where Cl represents the product of the kernel size Kl and
the number of input channels Cl−1 for layer l. σ2 repre-
sents the variance of the quantization value used to repre-
sent the weights. σ2

act represents the variance of the activa-
tion. Fisher [33] proposes a method to quantify the impor-
tance of each activation channel in a neural network, which
can be used to inform channel pruning. A metric fisher is
defined as follows:

fisher(z) =

(
∂L
∂z

z

)2

(18)

where Sz is the saliency activation z.
(3) Gradient as Input. Various pruning-based tech-

niques weight the gradient with activation or weight to
measure the sensitivity of a layer. SNIP [11] computes a
saliency metric at initialization using a single minibatch of
data to approximate the change in loss when a specific pa-
rameter is removed. The equation is shown in 19,

snip(θ) =

∣∣∣∣∂L∂θ ⊙ θ

∣∣∣∣ (19)

where L is the loss function of a neural network with pa-
rameters θ, and ⊙ is the Hadamard product. Synflow [32]
proposes a modified version of the synaptic saliency scores
that avoids layer collapse during parameter pruning. The
synflow proxy is computed that is simply the product of all
parameters in the network, so no data is needed to compute
the metric. Synflow [32] is defined in Equ. 20,

synflow(θ) =
∂R
∂θ

⊙ θ (20)

where ∂R
∂θ denotes the gradient of the synaptic flow loss.

(4) Weight as Input: The weight of a neural network is
another important input to compute saliency metrics. Plain
[25] proposed a method to estimate the importance of each

weight in the network, where the score is determined by
removing each weight and measuring the change in per-
formance. SNIP [11] extended this idea by computing the
saliency metric at initialization using a single minibatch of
data to approximate the change in loss when a specific pa-
rameter is removed. The saliency score is defined as the ab-
solute value of the product of the gradient and the weight,
as shown in Eqn.19. Synflow [32] also employs the weight
as input to compute the per-parameter saliency metric, as
shown in Eqn.20. The synflow proxy is computed by tak-
ing the product of the gradient and weight, and it can avoid
layer collapse during parameter pruning.

To conclude, the above studies have revealed that a va-
riety of zero-cost quantization proxies can be constructed
based upon the combination of four types of inputs (e.g.
activation, gradient, weight, and hessian) and two types of
operations (binary and unary). As shown in Fig. 10, we
illustrate how naive proxies, including Fisher [18], Plain,
SNIP [11], and Synflow [31], and Synflow, represents in our
branched search space, where “G” denotes gradient, “W”
denotes weight, “Z” denotes activation, and “V” denotes
the virtual gradient proposed in Synflow [31]. This moti-
vates the exploration of a larger search space of zero-cost
quantization proxies in order to identify those that demon-
strate improved performance.

B. MQ-Bench-101 Details
For Quantization-aware training, we model the effect

of quantization using simulated quantization operations,
which consist of a quantizer followed by a de-quantizer. In
our implementation of post-training quantization, we utilize
the ImageNet-1k dataset for training and evaluation. We
set the bitwidth of activation to 8 and allow the bitwidth of
weight to vary within the set {2, 3, 4}. We randomly sample
425 bit configurations and record their quantization accu-
racy to build the MQ-Bench-101 (version 1.0). Moreover,
we are actively training all bit configurations with a batch
size of 64. All of the experiment of MQ-Bench-101 is com-
puted by running each bit configuration on a single GPU
(NVIDIA RTX 3090). Our chosen convolutional neural
network is ResNet18, and we apply layer-wise quantization
for weights. We perform weight rounding calibration with
20,000 iterations, where the temperature during calibration
ranges from 20 to 2. We adopt asymmetry quantization and
use mean squared error (MSE) as the scale method. The
learning rate is set to 4e-4, and we use a calibration data size
of 1,024. We would like to acknowledge OMPQ [22] for the
implementation of our post-training quantization, which is
based on their official repository.

To ensure the effectiveness of our implementation, we
perform various experiments and evaluations. Our results
show that our post-training quantization method achieves
a significant reduction in memory usage without sacrific-

Table 9. The training hyper-parameter settings of post-training
quantization in MQ-Bench-101.

Setting Description
Precision {2, 3, 4}
Quantization Scheme asymmetric
Calibration Data 1,024
Weight-only Quantization !
Activation Quantization 8 bit
Layer-wise Quantization !
Infrastructure NVIDIA RTX 3090
Dataset ImageNet-1k
Network ResNet18
Learning Rate 4e-4

ing accuracy compared to the original network. We believe
our implementation can serve as a valuable reference for fu-
ture researchers and practitioners working on post-training
quantization for convolutional neural networks.

The usage of API. We provide convenient APIs to ac-
cess our MQ-Bench-101, which can be easily installed via
“pip install -e .” in our EMQ repository. The code snippet
of how to use MQ-Bench-101 is given below:

1 from emq.api import EMQAPI as API
2 api = API(’PTQ-GT.pkl’, verbose=False)
3 # sample random index
4 rnd_idx = api.random_index()
5 # query by index
6 acc = api.query_by_idx(rnd_idx)
7 # query bit_cfg by index
8 bit_cfg = api.fix_bit_cfg(rnd_idx)
9 print(f’The index: {rnd_idx} bit_cfg: {bit_cfg},

acc: {acc:.4f}’)
10

11 # sample random bit_cfg
12 rnd_bit_cfg = api.random_bit_cfg()
13 # query by bit_cfg
14 acc = api.query_by_cfg(rnd_bit_cfg)
15 # query index by bit_cfg
16 idx = api.get_idx_by_cfg(rnd_bit_cfg)
17 print(f’The index: {idx} bit_cfg: {rnd_bit_cfg},

acc: {acc:.4f}’)

We will release the code and benchmark data file.

C. Computation Graph Details
Computation Graph Structures. The three data struc-
tures, Sequential Structure, Branched Structure, and Di-
rected Acyclic Graph Structure, are used to represent the
MQ proxies in our work. These proxies are built to search
for the optimal neural architecture for a given task without
requiring any training.

(1) The sequential structure is an efficient data structure
that is commonly used to represent linear computations. It
is implemented as a linked list of nodes, with each node rep-
resenting an operation in the computation graph. This data
structure is suitable for modeling simple sequential compu-

Figure 10. Branched structure of different naive proxies, including the searched EMQ, Fisher [18], Plain [25], SNIP [11], and Synflow [31].
The nodes represent unary operation or binary operation, and the color represents the type of operation performed in the branched structure.
The searched EMQ proxy exhibits a more complex and diverse structure compared to other naive proxies, indicating its potential for
achieving better compression performance.

tations. As illustrated in Fig. 7 (a), we only take one type
of network statistics from gradient, activation, Hessian, and
weight, as input. After that, we perform 4 operations se-
quentially and finally perform aggregation operation, a.k.a.
to mean scalar, to produce the predicted score for the can-
didate proxy.

(2) The branched structure is a hierarchical data structure
that can represent computations with multiple branches. It
is implemented as a tree, with each node representing a
unary operation in the computation graph and the branches
representing the binary operations through the graph. This
data structure is more powerful than the sequential structure
and can model more complex computations. As demon-
strated in Fig. 7(b), the branched structure takes two types
of network statistics as input, which can be the same or dif-
ferent. Then, for each branch, we sequentially perform two
unary operations to transform the network statistics. After
that, we perform the binary operation to take the output of
the two branches as input and perform to mean scalar ag-
gregation function to get the output.

(3) The Directed Acyclic Graph (DAG) structure is a
general-purpose data structure that can represent any com-
putation, regardless of its complexity or structure. It is
implemented as a directed graph with no directed cycles,
which allows for modeling complex dependencies between
nodes. This data structure provides the greatest flexibility
in modeling complex computations. As shown in Fig. 7(c),
we take the same input settings as the branched structure.
For each node in the DAG, it would aggregate the infor-
mation from all of its predecessors and here we adopt bi-
nary operation to perform the middle aggregation operation.
The Fig. 7 illustrates the computation graph when there are
just two middle nodes. We adopt three middle nodes as
the default setting, which is more complex than the current
computation graph. Finally, we aggregate all of the statis-

tics from the middle nodes to produce the final output by
to mean scalar .

All three data structures are utilized in constructing the
MQ proxies for searching the optimal neural architecture
in our work. Nonetheless, considering the superior trade-
off between validity and expressive capability, we primarily
adopt the branched structure in this paper.
CrossOver for Structures. To perform crossover for the
three computation graph structures, sequential structure,
branched structure, and Directed Acyclic Graph structure,
we use different strategies. Here we only depict how the
branched structure performs crossover in Fig. 8. The prob-
ability of performing crossover is set to 50%.

(1) For sequential structure, we adopt a simple crossover
strategy. Given two parent structures, we randomly select a
crossover point and exchange the remaining nodes to create
two new offspring structures.

(2) For the branched structure, we use a branch-
switching crossover strategy. Given two parent structures,
we randomly select a branch from each parent and exchange
them to create two new offspring structures. This strategy
allows for exchanging complex branches between parent
structures and potentially producing more diverse offspring.
As depicted in Fig. 8, the two branches of offspring are se-
lected from one of the branches of the parent structure.

(3) For the Directed Acyclic Graph structure, we adopt
a random graph-based crossover strategy. Given two parent
structures, we randomly select a subset of nodes from each
parent and exchange them to create two new offspring struc-
tures. This strategy allows for exchanging nodes with dif-
ferent levels of connectivity and potentially producing more
diverse offspring.
Mutation for Computation Graph Structures. Mutation
is an important operation in the evolutionary algorithm. For
the Sequential and Branched structures, we perform mu-

tation by modifying a randomly selected node, which can
be either a layer or a connection between layers. Specifi-
cally, we randomly select a node and replace it with a new
one sampled from the search space with the probability of
50%, as depicted in Fig. 9. In the Directed Acyclic Graph
structure, we perform mutation by modifying the connec-
tions between nodes. We randomly select a node and add
or delete its incoming or outgoing edges, or we change the
type of an existing edge. This type of mutation allows for
more complex modifications to the graph structure and en-
ables the model to explore a larger search space.

D. Additional Details in Evolving Algorithm
D.1. Routine

In the context of mixed-precision quantization, proxies
play a crucial role in efficiently exploring the search space
of possible bit configurations for quantization. To evaluate
the quality of different configurations, there are two main
routines in the MQ framework: scoring the bit configura-
tions as a whole and evaluating the layer-wise sensitivity
separately.

Scoring the bit configurations involves computing a sin-
gle scalar score for a given quantization configuration,
which reflects its overall performance. This routine can be
done efficiently without the need for training and evaluation
since it only requires analyzing the model’s structure and
computing the gradient of each layer’s output with respect
to its input.

On the other hand, evaluating layer-wise sensitivity in-
volves measuring the sensitivity of each layer in a model to
quantization. This routine can be computationally expen-
sive since it requires training and evaluating a separate set
of quantized models for each configuration, which can be
time-consuming for large models.

In this paper, we focus on tackling the former routine
of scoring the bit configurations. We propose a novel ap-
proach that leverages a proxy to estimate the performance
of a given quantization configuration without the need for
training and evaluating separate models. Our approach re-
lies on learning a function that maps a quantization config-
uration to a corresponding performance score. To train this
function, we use a set of precomputed scores for a subset of
quantization configurations and a gradient-based optimiza-
tion method to fit the function to the available data. Our pro-
posed method achieves competitive results on benchmark
datasets while significantly reducing the computational cost
of searching for optimal quantization configurations.

D.2. Weisfeiler-lehman test

The Weisfeiler-Lehman (WL) test is a powerful method
for graph isomorphism testing, which can also be used to
perform the de-isomorphism process for the computation

Table 10. The affection of different initialization seeds on the over-
all Spearman rank correlation. The rank consistency results are
conducted on MQ-Bench-101.

Proxy
Seed

MEAN STD
0 1 2 3

BParam 0.3353 0.6031 0.7082 0.5564 0.5508 0.1360
SNIP 0.3334 0.4603 0.2605 0.4850 0.3848 0.0920

Synflow 0.2841 0.3398 0.2991 0.3398 0.3157 0.0247
HAWQ 0.5821 0.5316 0.7233 0.5821 0.6048 0.0715

HAWQ-V2 0.7813 0.8243 0.6943 0.6903 0.7475 0.0573
OMPQ 0.3295 0.3406 0.3141 0.2585 0.3107 0.0316

QE 0.3280 0.3519 0.3185 0.4616 0.3650 0.0571
EMQ 0.7132 0.7841 0.8712 0.7998 0.7921 0.0561

graph structures.
To apply the WL test, we first initialize each node in the

graph with a unique label. Then, for each iteration, we fol-
low these steps: For each node, we collect the labels of its
neighbors and sort them. We concatenate the sorted neigh-
bor labels and the node’s own label into a new string. We
use a hash function to map the new string to a new label for
the node. We update the label of each node with its new la-
bel. We repeat these steps for a fixed number of iterations,
denoted by h. After h iterations, we obtain a new set of la-
bels for all nodes in the graph, which can be used to perform
the de-isomorphism process.

D.3. Conflict Awareness

Conflict awareness is a crucial aspect of optimizing
search processes. In many cases, different operations that
are part of the search space can conflict with each other,
leading to unexpected or unstable behavior. In this sec-
tion, we explore some common examples of conflicting op-
erations and their potential impact on the search process.
The potential conflict operation pairs are summarized as fol-
lows:

• “log” and “exp”: These operations are inverses of each
other, so applying them in succession may effectively
cancel each other out. This can lead to numerical in-
stability, especially when dealing with small or large
values.

• “normalize” and “min max normalize”: Both of these
operations involve scaling the input data to lie within
a certain range. However, they use different scal-
ing strategies, which can cause conflicts when ap-
plied in succession. For example, normalizing data to
have zero mean and unit variance (as in “normalize”)
may undo the effects of min-max normalization, which
scales the data to lie within a specified range.

• “relu” and “sigmoid”: These activation functions have
different properties and are often used for different
purposes. ReLU is commonly used for its simplic-
ity and efficiency in deep neural networks, while sig-

Table 11. The unary operations and binary operations in the search space. “UOP” denotes the unary operations, and “BOP” denotes the
binary operations. The type of input and output can be scalar or matrix. “no op” denotes that we do not perform any operation, and
allows for the sparsity of the computation graph. Not all operations below are available or mathematically sound. When there is an illegal
operation, we adopt a try-catch mechanism to detect the invalidity and avoid the interruption of the search process.

OP ID OP Name Input Args Output Args Description

UOP00 no op – – –

UOP01 element wise abs a / scalar,matrix b / scalar,matrix xb = |xa|
UOP02 element wise tanh a / scalar,matrix b / scalar,matrix xb = tanh(xa)
UOP03 element wise pow a / scalar,matrix b / scalar,matrix xb = x2

a

UOP04 element wise exp a / scalar,matrix b / scalar,matrix xb = exa

UOP05 element wise log a / scalar,matrix b / scalar,matrix xb = lnxa

UOP06 element wise relu a / scalar,matrix b / scalar,matrix xb = max(0, xa)
UOP07 element wise leaky relu a / scalar,matrix b / scalar,matrix xb = max(0.1xa, xa)
UOP08 element wise swish a / scalar,matrix b / scalar,matrix xb = xa × sigmoid(xa)
UOP09 element wise mish a / scalar,matrix b / scalar,matrix xb = xa × tanh(ln 1 + exp(xa))
UOP10 element wise invert a / scalar,matrix b / scalar,matrix xb = 1/xa

UOP11 element wise normalized sum a / scalar,matrix b / scalar,matrix xb =
∑

xa

numel(xa)+ϵ

UOP12 normalize a / scalar,matrix b / scalar,matrix xb =
xa−mean(xa)

std(xa)

UOP13 sigmoid a / scalar,matrix b / scalar,matrix xb =
1

1+e−xa

UOP14 logsoftmax a / scalar,matrix b / scalar,matrix xb = ln exa∑n
i=1 esi

UOP15 softmax a / scalar,matrix b / scalar,matrix xb =
exa∑n
i=1 esi

UOP16 element wise sqrt a / scalar,matrix b / scalar,matrix xb =
√
xa

UOP17 element wise revert a / scalar,matrix b / scalar,matrix xb = −xa

UOP18 frobenius norm a / scalar,matrix b / scalar,matrix xb =
√∑n

i=1 s
2
i

UOP19 element wise abslog a / scalar,matrix b / scalar,matrix xb = |lnxa|
UOP20 l1 norm a / scalar,matrix b / scalar,matrix xb =

∑n
i=1|si|

numel(xa)

UOP21 min max normalize a / scalar,matrix b / scalar,matrix xb =
xa−min(xa)

max(xa)−min(xa)

UOP22 to mean scalar a / scalar,matrix b / scalar xb =
xa

n

UOP23 to std scalar a / scalar,matrix b / scalar xb =

√∑n
i=1(si−s̄)2

n

BOP01 element wise sum a,b / scalar,matrixs c / scalar,matrix xc = xa + xb

BOP02 element wise difference a,b / scalar,matrixs c / scalar,matrix xc = xa − xb

BOP03 element wise product a,b / scalar,matrixs c / scalar,matrix xc = xa × xb

BOP04 matrix multiplication a,b / scalar,matrixs c / scalar,matrix xc = xa@xb

moid is often used in binary classification tasks. How-
ever, applying these functions in succession can lead
to non-monotonic behavior, which can cause optimiza-
tion problems.

• “log” and “softmax”: Both of these operations in-
volve taking the logarithm of the input data. However,
the softmax function also involves exponentiation and
normalization, which can lead to numerical instability
when combined with the logarithm function.

• “pow” and “sqrt”: pow raises a number to a power,
while sqrt calculates the square root. Using them to-
gether may lead to unexpected results or loss of preci-
sion.

• “sigmoid” and “softmax”: these operations are com-

monly used in neural networks, but applying them to-
gether may lead to overfitting or unstable behavior.

• “frobenius norm” and “revert”: frobenius norm calcu-
lates the Frobenius norm of a matrix (i.e., the square
root of the sum of the squared values). Applying re-
vert to a matrix will negate all its values, including the
norm.

• “invert” and “revert” operations are also in conflict
with themselves. The invert operation involves divid-
ing 1 by the tensor, which can cause numerical insta-
bility when the tensor contains values close to 0. The
revert operation involves subtracting the tensor from
1, which can also cause numerical instability when the
tensor contains values close to 1.

• “abs” and “relu”: While these operations are not math-
ematically inverse, they have similar effects on the in-
put data. Using them together in the same search space
may lead to redundant or contradictory combinations.

• “to mean scalar” and “to sum scalar”: In MQ proxy
discovery, we do not care for the absolute value of the
proxy score but the relative value. To aggregation op-
erations, computing the mean of the value and the sum
of it do not influence the ranking ability or correlation
of a MQ proxy.

• others: In general, there are conflicts between activa-
tion functions, such as “relu”, “leaky relu”, “swish”
and “mish”, and two consecutive activation functions
do not need to appear in a computational graph.

Generally, conflict awareness plays a non-trivial role in
optimizing search processes. It helps to mitigate numer-
ical instability, improve performance, and ensure the effi-
ciency and effectiveness of the search process. Our analy-
sis of common examples of conflicting operations empha-
sizes the need to consider the relationships between dif-
ferent operations and their potential impact on the overall
search process. By identifying potentially conflicting opera-
tion pairs, such as those we have discussed, the EMQ search
process can avoid generating invalid combinations of oper-
ations and instead focus on discovering high-quality config-
urations that are both diverse and effective. Ultimately, con-
flict awareness is a critical component of any search process
that aims to produce accurate and reliable results.

D.4. Naive Invalid Check

In the search for an optimal mixed-precision quantiza-
tion scheme, the validity of the generated proxies is cru-
cial. The Naive Invalid Check technique is a simple yet
effective way to reduce the number of invalid proxies gen-
erated during the search process. This technique involves
checking if the estimated score of a proxy belongs to a set
of invalid scores, which includes {−1, 1, 0,NaN, and Inf}.
These scores indicate that the proxy is indistinguishable and
unreliable, and should be rejected at an early stage.

An estimated score of a MQ proxy in EMQ search space
can be invalid due to several reasons. For example, a score
of -1 arise from a shape mismatch issue or a user-defined
exception, while a score of 1 may indicate a numerical in-
sensitivity. A score of 0 may indicate a numerical instability
or the result of an invalid operation. NaN (Not a Number)
may arise due to a variety of reasons such as division by
zero, square root of a negative number, or logarithm of a
non-positive number. Finally, a score of infinity may arise
from an overflow in arithmetic operations or the result of
invalid mathematical operations. By rejecting these invalid

proxies early, the search space is reduced, and the optimiza-
tion process becomes more efficient. Furthermore, the re-
jection of invalid proxies reduces the computational cost of
evaluating the fitness of the generated proxies, which can
be quite expensive. Despite its simplicity, the Naive Invalid
Check technique has been shown to be effective in identi-
fying invalid proxies, as the set of invalid scores used in
the technique covers a wide range of possible invalid proxy
configurations.

D.5. Operation Sampling Prioritization

To mitigate the large number of invalid candidates that
result from random operation sampling during the search
for MQ proxies, we propose Operation Sampling Prioritiza-
tion (OSP), which assigns different probabilities to various
operations. Specifically, we assign a higher probability to
the no op operation for unary operations to promote spar-
sity in the search space and prevent an excess of operations.
For binary operations, we assign a higher probability to the
element-wise add operation, as it is the most common oper-
ation and unlikely to cause shape-mismatch problems. We
also assign probabilities to other binary operations based on
their likelihood to cause shape-mismatch problems. Con-
cretely,

• For unary operations: We assign a probability of 0.2 to
the ”no op” operation to promote sparsity in the search
space and prevent excessive operations. The remaining
operations are assigned an equal probability of 0.1.

• For binary operations: We assign a probability of 0.6
to the ”sum” operation, which is the most common and
least likely to cause shape-mismatch problems. We as-
sign a probability of 0.3 to the ”subtract” operation.
The ”product” and ”matrix multiplication” operations,
which are more likely to cause shape-mismatch prob-
lems, are assigned a lower probability of 0.05.

D.6. Iterations and Population

In this section, we discuss how we determined the ap-
propriate iteration and population size for the evolutionary
algorithm. Both iteration and population size are important
parameters that affect the performance of evolutionary al-
gorithms. To determine the iteration, we used a stopping
criterion that takes the best Spearman rank coefficient of
human-designed MQ proxies [31, 11, 22, 29] as the de-
sired level of correlation. For population size, we found that
it mainly affects initialization performance. Thanks to the
proposed diversity-prompting selection mechanism, we can
maintain population diversity with a small population size
of 20. As shown in Fig. 11, the Spearman coefficient for
the initialization generation with a population size of 200
is over 0.5, surpassing the one with a population size of 20
by a large margin (10%). However, the population size only

Figure 11. Effect of population size on initialization Spearman cor-
relation. As the population size increases, the initialization Spear-
man correlation improves.

influences initialization performance and does not affect the
final performance.

E. More Ablation Study
In this section, we will perform ablation studies to ana-

lyze the sensitivity of the searched EMQ proxy to different
settings. This will help us understand the impact of these
parameters on the performance of the search process and
identify the optimal settings for achieving high-quality re-
sults.

E.1. Sensitivity Analysis of Batch Size

We present the sensitivity analysis of the searched EMQ
proxy to batch size. We observed that the searched EMQ
proxy is completely data-free, and when different batch
sizes are used with the same seed, the Spearman rank
correlation remains the same. This is intuitive because
the searched EMQ takes the gradient of the Synaptic flow
loss [31] and the weight, both of which are unrelated to the
input. We also noted that when we set ”shuffle=False” in
the dataloader, the Spearman’s rank correlation remains un-
affected by the batch size. However, shuffling the mini-
batch of data during evaluation can be influenced by the
seed, which in turn affects the mini-batch of data. The
Fig. 12 investigates the impact of batch size on the Spear-
man correlation of the searched EMQ proxy. The results
reveal that increasing the batch size leads to an improve-
ment in the average Spearman correlation. Moreover, the
variance of the Spearman correlation over seven seeds de-
creases as the batch size increases. Notably, when the
batch size is extremely small, the Spearman correlation
exhibits a surprisingly good performance. Based on the
above observation, we select 64 as the batch size to strike
a balance between computational complexity and correla-
tion performance. Specifically, selecting a batch size that
is too small may improve correlation performance but will

Figure 12. Effect on Spearman rank coefficient of the searched
EMQ with respect to batch size. The experiments are done on the
MQ-Bench-101 over 7 seeds for 50 bit configurations

increase computational overhead due to frequent parameter
updates, while choosing a batch size that is too large can
lead to slower convergence and worse correlation perfor-
mance. However, under extreme computational constraints,
a batch size of 1 can be selected.

E.2. Sensitivity Analysis of Seeds

To assess the influence of the random seed and batch on
the searched MQ proxies, we conduct experiments using
different seeds and batches of data. This investigation aids
in comprehending the extent to which variations in search
outcomes can be ascribed to the random seed and batch
data. By performing a sensitivity analysis of the seed, we
can ensure the robustness of the searched MQ proxy and
minimize its susceptibility to the influence of a specific ran-
dom seed. The seed mainly influences the candidate bit
configuration chosen during the evaluating the EMQ proxy.
When the seed is fixed, the sampled bit configuration is
also fixed, resulting in the same outcomes. As indicated
in Tab. 10, we conduct each experiment four times using
different seeds and compute the mean and standard devia-
tion of the Spearman rank correlation. Our searched EMQ
proxy exhibit the best correlation on MQ-Bench-101, with a
similar variance as other unsophisticated proxies. Notably,
we observe that when scoring bit configurations as a whole,
HAWQ [6] and HAWQ-V2 [5] also achieve competent per-
formance when compared with their counterparts.

E.3. Performance with other metrics

Tab. 12 presents the results of the ranking consistency
analysis using Kendall’s Tau and Pearson correlation coef-
ficients. The experiments were run five times with different
seeds, and the ranking correlation was computed based on
50 bit configurations. The rankings were compared between

Table 12. The ranking consistency with Kendall’s Tau and Pear-
son. Each experiments run 5 times and the ranking correlation is
computed based on 50 bit configurations.

Kendall Tau Pearson
MEAN STD MEAN STD

QE [29] 0.2831 0.0493 0.4131 0.0808
OMPQ [22] 0.1766 0.0249 0.1823 0.0312
HAWQv2 [5] 0.5550 0.0478 0.7213 0.0486
HAWQ [6] 0.4722 0.0006 0.6795 0.0028
Synflow [31] 0.2356 0.0768 0.3633 0.1130
SNIP [11] 0.2724 0.0175 0.2313 0.0227
Bparam 0.3133 0.0893 0.4763 0.1318
EMQ(Ours) 0.6030 0.0373 0.8084 0.0315

the different runs to evaluate the consistency of the results.
Kendall’s Tau and Pearson are two widely used correla-

tion coefficients in data analysis. Kendall’s Tau is a non-
parametric measure of the association between two vari-
ables, which means that it does not assume any particular
distribution of the data. It measures the similarity of the
rankings between two variables, and it ranges between -1
(perfect negative correlation) and 1 (perfect positive corre-
lation). Pearson correlation coefficient, on the other hand,
assumes a linear relationship between two variables and
measures the strength of this relationship. It ranges between
-1 (perfect negative correlation) and 1 (perfect positive cor-
relation).

The results of Kendall’s Tau and Pearson correlation co-
efficients furnish us with a more extensive comprehension
of the effectiveness of the hand-crafted MQ proxy and our
designed EMQ proxy. It is noteworthy that our EMQ proxy
demonstrates the highest correlation in both Kendall’s Tau
and Pearson. It is also notable that the HAWQ [6] and
HAWQv2 [5] exhibit proficient performance.

F. Primitive Operations
The primitive operations used in the search space of

EMQ can be classified into two categories: unary and bi-
nary operations.

• The unary operations available in the search space
include “log”, “abslog”, “abs”, “pow”, “exp”, “nor-
malize”, “relu”, “swish”, “mish”, “leaky relu”,
“tanh”, “invert”, “frobenius norm”, “normal-
ized sum”, “l1 norm”, “softmax”, “sigmoid”,
“logsoftmax”, “sqrt”, “revert”, “min max normalize”,
“to mean scalar”, “to std scalar”, and “no op.” These
operations can be applied to a single input tensor,
which may have any number of dimensions.

• The binary operations available in the search space are
“sum”, “subtract”, “multiply”, and “dot.” These oper-
ations can be applied to two input tensors, which may
have any number of dimensions, as long as they are
compatible for the specified operation.

The possible types of statistics in the computation graph
can be scalar, vector o r graph. However, we observe that
the computation between the matrix and vector is always
mismatched and can not function well. Most of the middle
statistics in the computation graph are matrix type, which
would cause severe shape mismatch problems and decrease
the search process of the EMQ. Empirically, we the op-
erations that can produce the type of vector, for example,
“heaviside”, “dot”, “std”, etc.

References
[1] Haim Avron and Sivan Toledo. Randomized algorithms for

estimating the trace of an implicit symmetric positive semi-
definite matrix. Journal of the ACM (JACM), 58(2):1–34,
2011. 2

[2] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13169–13178, 2020. 1

[3] Ting-Wu Chin, I Pierce, Jen Chuang, Vikas Chandra, and
Diana Marculescu. One weight bitwidth to rule them all.
In European Conference on Computer Vision, pages 85–103.
Springer, 2020. 1

[4] Peijie Dong, Lujun Li, and Zimian Wei. Diswot: Student
architecture search for distillation without training. In CVPR,
2023. 1

[5] Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir
Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq-
v2: Hessian aware trace-weighted quantization of neural net-
works. arXiv preprint arXiv:1911.03852, 2019. 1, 2, 3, 9,
10

[6] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-
honey, and Kurt Keutzer. Hawq: Hessian aware quantization
of neural networks with mixed-precision. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 293–302, 2019. 1, 2, 3, 9, 10

[7] Ahmed T. Elthakeb, Prannoy Pilligundla, FatemehSa-
dat Mireshghallah, Amir Yazdanbakhsh, and Hadi Es-
maeilzadeh. Releq : A reinforcement learning approach for
automatic deep quantization of neural networks. IEEE Mi-
cro, 40:37–45, 2020. 1

[8] Hai Victor Habi, Roy H. Jennings, and Arnon Netzer. Hmq:
Hardware friendly mixed precision quantization block for
cnns. ArXiv, abs/2007.09952, 2020. 1

[9] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 1

[10] Qing Jin, Linjie Yang, and Zhenyu A. Liao. Adabits: Neu-
ral network quantization with adaptive bit-widths. 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2143–2153, 2019. 1

[11] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Snip: Single-shot network pruning based on connection
sensitivity. ArXiv, abs/1810.02340, 2018. 2, 3, 4, 5, 8, 10

[12] Lujun Li. Self-regulated feature learning via teacher-free
feature distillation. In ECCV, 2022. 1

[13] Lujun Li, Peijie Dong, Zimian Wei, and Ya Yang. Automated
knowledge distillation via monte carlo tree search. In ICCV,
2023. 1

[14] Lujun Li and Zhe Jin. Shadow knowledge distillation: Bridg-
ing offline and online knowledge transfer. In NeuIPS, 2022.
1

[15] Lujun Li, Liang Shiuan-Ni, Ya Yang, and Zhe Jin. Boost-
ing online feature transfer via separable feature fusion. In
IJCNN, 2022. 1

[16] Lujun Li, Liang Shiuan-Ni, Ya Yang, and Zhe Jin. Teacher-
free distillation via regularizing intermediate representation.
In IJCNN, 2022. 1

[17] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-shot
nas for high-performance image recognition. ICCV, 2021. 2

[18] Shiwei Liu, Decebal Constantin Mocanu, Yulong Pei, and
Mykola Pechenizkiy. Selfish sparse rnn training. arXiv
preprint arXiv:2101.09048, 2021. 4, 5

[19] Xiaolong Liu, Lujun Li, Chao Li, and Anbang Yao. Norm:
Knowledge distillation via n-to-one representation matching.
In ICLR, 2023. 1

[20] Vasco Lopes, Saeid Alirezazadeh, and Luı́s A. Alexandre.
Epe-nas: Efficient performance estimation without training
for neural architecture search. In ICANN, 2021. 2

[21] Qian Lou, Feng Guo, Lantao Liu, Minje Kim, and Lei Jiang.
Autoq: Automated kernel-wise neural network quantization.
arXiv preprint arXiv:1902.05690, 2019. 1

[22] Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang,
Huixia Li, Guannan Jiang, Wei Zhang, and Rongrong Ji.
Ompq: Orthogonal mixed precision quantization. ArXiv,
abs/2109.07865, 2021. 1, 2, 3, 4, 8, 10

[23] Joseph Mellor, Jack Turner, Amos J. Storkey, and Elliot J.
Crowley. Neural architecture search without training. arXiv
preprint arXiv:2006.04647, 2020. 2

[24] Nelson Morgan et al. Experimental determination of preci-
sion requirements for back-propagation training of artificial
neural networks. In Proc. Second Int’l. Conf. Microelectron-
ics for Neural Networks, pages 9–16. Citeseer, 1991. 1

[25] Michael C. Mozer and Paul Smolensky. Skeletonization: A
technique for trimming the fat from a network via relevance
assessment. In NIPS, 1988. 2, 3, 5

[26] Kenneth H Norwich. Information, sensation, and perception.
Academic Press San Diego, 1993. 2

[27] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware
quantization for training and inference of neural networks.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 580–595, 2018. 1

[28] Esteban Real, Chen Liang, David R. So, and Quoc V. Le.
Automl-zero: Evolving machine learning algorithms from
scratch. In International Conference on Machine Learning,
2020. 2

[29] Zhenhong Sun, Ce Ge, Junyan Wang, Ming Lin, Hesen
Chen, Hao Li, and Xiuyu Sun. Entropy-driven mixed-
precision quantization for deep network design on iot de-
vices. In Advances in Neural Information Processing Sys-
tems, 2022. 1, 2, 3, 8, 10

[30] Zhenhong Sun, Ming Lin, Xiuyu Sun, Zhiyu Tan, Hao Li,
and Rong Jin. Mae-det: Revisiting maximum entropy prin-
ciple in zero-shot nas for efficient object detection. In Inter-
national Conference on Machine Learning, 2021. 2

[31] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by iter-
atively conserving synaptic flow. In NeurIPS, 2020. 4, 5, 8,
9, 10

[32] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and
Surya Ganguli. Pruning neural networks without any data by
iteratively conserving synaptic flow. ArXiv, abs/2006.05467,
2020. 2, 3, 4

[33] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Fer-
enc Huszár. Faster gaze prediction with dense networks and
fisher pruning. ArXiv, abs/1801.05787, 2018. 2, 3

[34] Chaoqi Wang, ChaoQi Wang, Guodong Zhang, and
Roger Baker Grosse. Picking winning tickets before training
by preserving gradient flow. ArXiv, abs/2002.07376, 2020. 2

[35] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8612–
8620, 2019. 1

[36] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, and
Song Han. Apq: Joint search for nerwork architecture, prun-
ing and quantization policy. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2020. 1

[37] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,
Peter Vajda, and Kurt Keutzer. Mixed precision quantiza-
tion of convnets via differentiable neural architecture search.
arXiv preprint arXiv:1812.00090, 2018. 1

[38] Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang
Cheng, and Bin Fan. Search what you want: Barrier panelty
nas for mixed precision quantization. In European Confer-
ence on Computer Vision, pages 1–16. Springer, 2020. 1

