
A. Supplementary Material
This supplementary material presents detailed optimiza-

tion pipeline of the proposed HFC model in Section A.1,
analysis of incremental tasks in Section A.2, and stable con-
vergence analysis in Section A.3. The code is available at
https://github.com/JiahuaDong/HFC.

A.1. Optimization Pipeline of Our HFC Model

The optimization of our HFC to learn new classes con-
secutively is summarized in Algorithm 1. Θt along with
learnable Et

0 are optimized via LCE in Eq. (5) for the first
task, and trained via Lobj in Eq. (14) when t ≥ 2. After
optimizing Θt in the t-th task, we store Θt as the frozen
old model Θt−1 to perform the gradient-balanced relation
distillation loss LRD in Eq. (13) for the next learning task.
Meanwhile, the exemplar memory M is updated via follow-
ing iCaRL [40] to replay only few samples (i.e., |M|

Ko+Kt ) of
each learned class for the next task, or following PODNet
[17] to store 20 exemplars for each learned class.

A.2. Task-wise Performance Comparison

In order to comprehensively evaluate the effectiveness of
our proposed HFC model, top-1 accuracy is employed to
compare our model with other state-of-the-art CIL methods.
As shown in Tabs. 8–9, our model achieves significant im-
provement over other methods by 1.4% ∼ 13.2% in terms
of top-1 average accuracy. Specially, compared to the previ-
ous methods, the performance gap increases as the number
of stages grows. It reflects that our HFC model is more
effective to deal with challenging tasks and achieve solid
improvement for all incremental tasks. In addition, Our HFC
model achieves superior performance compared to the base-
line methods for most of the tasks, which shows that our
method can effectively address the catastrophic forgetting of
old classes from both representation and gradient aspects.

As shown in Tab. 10, we present comparison experiments
in terms of top-1 accuracy between our HFC model and
other CIL baselines on CIFAR-100 [33], when the number
of tasks is 10. We apply two plug-and-play losses (i.e.,
LFC and LRD) to existing CIL methods. The experimental
results show that the proposed plug-and-play losses help
current CIL methods to overcome heterogeneous forgetting
from a gradient perspective. More importantly, as shown in
Tab. 10, our proposed losses help the existing state-of-the-
art CIL methods significantly improve by 0.5% ∼ 6.7% in
terms of top-1 averaged accuracy on CIFAR-100 [33]. It
verifies stable generalization of our HFC model to address
heterogeneous catastrophic forgetting.

A.3. Qualitative Analysis of Convergence

As presented in Fig. 5, we introduce some qualitative
convergence results in terms of top-1 accuracy for each in-

Algorithm 1: Optimization pipeline of HFC.

Input: The consecutive tasks T = {T t}Tt=1, {α1, α2};
1: for t = 1, 2, · · · , T do
2: while not converged do
3: if t = 1 then
4: Obtain a mini-batch {xt

i,y
t
i}bi=1 ∈ T t;

5: Update Θt, Et
0 via optimizing LCE in Eq. (5);

6: else
7: Obtain a mini-batch {xt

i,y
t
i}bi=1 ∈ T t ∪M;

8: Update Θt, Et
0 via optimizing Lobj in Eq. (14);

9: end if
10: end while
11: Update memory M via following [40];
12: Store Θt as Θt−1, and Et

0 for next initialization.
13: end for

cremental task on ImageNet-100 [10]. From these curves,
we can observe that the accuracy in each increment task
increases gradually until convergence as the training pro-
cess. It shows that our proposed HFC model has robust
convergence performance for each incremental task. More
importantly, the convergence speed is fast via optimizing the
proposed HFC model with only few training epochs. It also
illustrates the effectiveness of our proposed model to address
heterogeneous catastrophic forgetting on old classes.

Figure 5. Convergence curves on ImageNet-100 [10], when we set
M = 2000,B = 0% for T = {5, 10}.



Table 8. Performance of each incremental task on ImageNet-100 [10] in terms of top-1 accuracy, when M = 2000, T =10 and B=0%.

Comparison Methods Backbone #Params B = 0%
10 20 30 40 50 60 70 80 90 100 Avg. Imp.

iCaRL [40] (CVPR’2017) ViT-Base 85.10M 96.4 95.4 91.5 86.4 81.3 78.6 76.6 74.8 72.8 70.4 82.4 ⇑3.0
BiC [50] (CVPR’2019) ViT-Base 85.10M 97.8 96.1 89.5 86.8 79.0 76.8 73.5 72.7 67.3 62.9 80.2 ⇑5.2
PODNet [17] (ECCV’2020) ViT-Base 85.10M 97.8 96.1 89.5 86.9 79.1 76.9 73.6 71.9 66.4 63.1 80.1 ⇑5.3
SS-IL [2] (ICCV’2021) ViT-Base 85.10M 96.6 96.2 91.1 86.9 81.2 77.7 76.1 75.0 68.9 67.0 81.7 ⇑3.7
PODNet [17] + CSCCT [4] (ECCV’2022) ViT-Base 85.10M 96.8 94.0 90.3 85.6 79.0 75.6 75.1 74.8 70.4 68.1 81.0 ⇑4.4
FOSTER [47] (ECCV’2022) ViT-Base 85.10M 96.4 96.4 92.0 88.0 83.5 81.1 79.1 77.2 74.8 73.0 84.0 ⇑1.4
AFC [32] (CVPR’2022) ViT-Base 85.10M 96.8 96.7 89.5 86.3 79.7 77.5 75.5 74.7 70.0 65.6 81.2 ⇑4.2
DyTox [18] (CVPR’2022) ViT-Base 85.10M 96.4 95.7 92.2 88.2 83.0 79.5 77.0 75.3 70.4 66.8 83.4 ⇑2.0

HFC (Ours) ViT-Base 85.10M 96.8 96.6 92.6 89.2 85.1 82.7 80.5 79.0 76.8 75.5 85.4 −

Upper Bound ViT-Base 85.10M − − − − − − − − − − 86.3 −

Table 9. Performance of each incremental task on ImageNet-1000 [10] in terms of top-1 accuracy, when M = 2000, T =10 and B=0%.

Comparison Methods Backbone #Params B = 0%
10 20 30 40 50 60 70 80 90 100 Avg. Imp.

iCaRL [40] (CVPR’2017) ViT-Base 85.10M 90.7 83.5 78.2 75.2 72.4 70.0 67.1 64.3 61.8 61.0 72.4 ⇑4.0
BiC [50] (CVPR’2019) ViT-Base 85.10M 90.7 84.4 76.4 71.9 66.6 61.1 57.4 53.5 50.8 47.4 66.0 ⇑10.4
PODNet [17] (ECCV’2020) ViT-Base 85.10M 84.4 79.1 75.8 72.7 71.4 69.0 67.1 65.8 64.7 63.5 71.3 ⇑5.1
SS-IL [2] (ICCV’2021) ViT-Base 85.10M 85.5 85.3 78.4 78.0 76.0 73.2 71.3 69.8 66.5 63.7 74.8 ⇑1.6
PODNet [17] + CSCCT [4] (ECCV’2022) ViT-Base 85.10M 90.3 67.6 62.7 62.2 60.9 60.0 58.8 57.7 56.4 55.7 63.2 ⇑13.2
FOSTER [47] (ECCV’2022) ViT-Base 85.10M 90.9 84.8 79.7 77.0 74.2 72.1 69.4 67.3 64.5 63.4 74.3 ⇑2.1
AFC [32] (CVPR’2022) ViT-Base 85.10M 90.5 86.3 80.1 76.3 72.2 67.8 64.6 61.6 58.3 56.0 71.4 ⇑5.0
DyTox [18] (CVPR’2022) ViT-Base 85.10M 91.5 88.1 83.1 79.8 76.3 72.2 68.6 65.7 62.4 59.4 74.7 ⇑1.7

HFC (Ours) ViT-Base 85.10M 90.7 85.9 81.6 79.3 76.6 74.4 71.7 69.9 67.9 66.0 76.4 −

Upper Bound ViT-Base 85.10M − − − − − − − − − − 86.3 −

Table 10. Performance on CIFAR-100 [33] (T = 10), when we apply Ours‡ into existing distillation-based CIL methods and set
M = 2000,B = 0%. Ours‡ denotes the proposed plug-and-play losses LFC and LRD.

Comparison Methods Backbone #Params B = 0%
10 20 30 40 50 60 70 80 90 100 Avg. Imp.

iCaRL [40] (CVPR’2017) ResNet-32 0.46M 84.2 77.3 73.0 68.4 63.5 60.5 58.3 54.5 52.3 47.4 63.9 ⇑1.8
iCaRL [40] + Ours‡ ResNet-32 0.46M 84.2 78.6 74.9 69.8 65.6 62.5 60.3 55.4 54.2 51.4 65.7 −

BiC [50] (CVPR’2019) ResNet-32 0.46M 88.9 70.1 56.0 45.7 43.9 46.6 41.6 39.9 39.1 35.8 50.8 ⇑3.0
BiC [50] + Ours‡ ResNet-32 0.46M 88.9 72.1 58.1 49.0 47.7 49.4 44.8 44.0 43.5 40.5 53.8 −

PODNet [17] (ECCV’2020) ResNet-32 0.46M 85.7 73.0 63.8 56.4 53.7 48.3 45.2 42.0 39.0 38.1 54.5 ⇑5.5
PODNet [17] + Ours‡ ResNet-32 0.46M 89.5 77.8 69.6 62.6 57.2 55.6 51.1 49.6 45.9 41.2 60.0 −

SS-IL [2] (ICCV’2021) ResNet-32 0.46M 84.7 67.3 64.5 60.2 57.4 54.5 53.5 50.9 49.8 47.6 59.0 ⇑5.9
SS-IL [2] + Ours‡ ResNet-32 0.46M 86.0 78.2 74.2 68.9 64.8 61.7 59.6 54.3 52.9 48.0 64.9 −

PODNet [17] + CSCCT [4] (ECCV’2022) ResNet-32 0.46M 85.7 73.0 63.7 56.3 53.6 48.1 44.9 41.7 38.7 37.8 54.3 ⇑4.2
PODNet [17] + CSCCT [4] + Ours‡ ResNet-32 0.46M 85.7 75.0 67.7 60.9 57.9 53.2 50.4 46.9 44.0 43.5 58.5 −

FOSTER [47] (ECCV’2022) ResNet-32 0.46M 91.9 82.0 75.7 71.0 67.8 65.4 61.8 59.5 58.4 53.7 68.7 ⇑1.2
FOSTER [47] + Ours‡ ResNet-32 0.46M 91.9 82.2 77.2 71.5 68.4 67.4 63.3 61.6 59.5 56.0 69.9 −

AFC [32] (CVPR’2022) ResNet-32 0.46M 90.9 76.5 65.7 57.4 52.8 51.8 47.4 45.5 42.8 40.2 57.1 ⇑6.7
AFC [32] + Ours‡ ResNet-32 0.46M 88.7 81.2 72.3 65.9 62.6 60.2 56.2 53.4 50.2 46.8 63.8 −

Upper Bound ResNet-32 0.46M − − − − − − − − − − 76.6 −

DyTox [18] (CVPR’2022) ViT-Tiny 10.71M 91.9 85.0 80.0 74.8 73.4 71.4 68.2 65.9 63.9 61.0 73.5 ⇑0.5
DyTox [18] + Ours‡ ViT-Tiny 10.71M 91.7 86.0 80.5 74.8 73.7 72.0 68.5 66.7 64.7 61.1 74.0 −

Upper Bound ViT-Tiny 10.71M − − − − − − − − − − 76.1 −


