Knowledge Restore and Transfer for Multi-Label Class-Incremental Learning
Supplemental Material

A. Appendix
A.1. Other Related Work

Incremental object detection(IOD) applies incremental
learning to object detection specifically. Both KD and ER
have been applied to IOD task and implement on different
detectors. [18] first uses the KD to the output of Faster R-
CNN and subsequent methods [6, 7] add KD terms on the
intermediate feature maps and region proposal networks or
store a set of exemplars to fine-tune the model. In addition
to being applied to CNN detectors, ER and KD have also
been applied to the transformer network DETR [11].

Incremental Semantic Segmentation(ISS) methods can
be classified into regularization-based and replay-based ap-
proaches. The former approaches such as SDR [13] and
PLOP [4] propose different KD strategies to regularize a
current model in a latent feature space. The second ap-
proaches [3, 12] rely on an ER strategy, involving retention
of a small set of exemplars or pseudo information for previ-
ous categories.

It is evident that the IOD and ISS methods are not directly
applicable to MLCIL tasks due to their reliance on specific
detection and segmentation frameworks. Therefore, conduct-
ing research on MLCIL with only image-level annotations is
of great value and significance.

A.2. More Experimental Details

All models are implemented with PyTorch and trained on
2 RTX 3090 GPUS. We resize images to h X w = 224 x 224
as the input resolution and the size of output feature is 7 X
7 x 2048. The extracted features are fed into the ICA module
after linear projection and adding position encodings. We
set the dimension d = 384 for COCO and d = 768 for VOC
datasets. For the ICA module, the embedding dimension [
is set to 384 for COCO and 768 for VOC datasets, and the
number of heads h is set to 8. For the DPL method, the
threshold 7 is initialized as 0.8, and the target value p is set
to 2.9 for COCO and 1.4 for VOC datasets. The sensitive
study of hyper-parameter A in ablation study has summarized
that the performance of our methods changes are minimal
under different A and we report the best hyper-parameter
values under different protocols. Concretely, the ) is set to
100 for BO benchmark and 300 for B40(B10) benchmark.

All compared methods, including baselines, CIL meth-
ods [9, 17, 16, 14,2, 1, 5, 19], and MLOIL methods [10, 8],
utilize TResNetM pre-trained on ImageNet-21k as the back-
bone (L2P [20] employs ViT-B/16 pre-trained on ImageNet-
21k as the backbone). To adapt SCIL methods for MLCIL
tasks, we employ L 457, as the classification loss instead of
cross-entropy loss and rely on the original codebase to imple-
ment the method and carefully select hyper-parameters to en-
sure optimal performance. For the MLOIL methods [10, 8],
we directly implement them in MLCIL protocol using their
original codebase.

Algorithm 1 Dynamic Pseudo-Label

Require: Session ¢ training set X, Initial threshold 7;
Require: Session ¢ target value z¢, Old model ©°~*.
Ensure: Updated training set Xt
1: Employ model ©°~! to infer the training set X* based on
initial threshold 7 to obtain pseudo-label set S*
: Count the number of images M in training set X"
: Calculate the the average pseudo labels per image 5° = ‘AS—;,‘
. while ( |5* — pf| >1e™ ') do
if 5 > u' then
n'=n'+1le—2
else {8* < u'}
nf=n'—le—2
end if
Employ model ©°~! to infer the training set X* based on

R A o

—_
e

n' to obtain pseudo-label set S*
[s*]

11:  Calculate the the average pseudo labels per image 3" = SV

12: end while
13: Merge the pseudo-label set S* with the label set Y as new
ground truth Y* and obtain the updated training set Xt

A.3. Discussion of ICA Parameters

The initial parameter count of the ICA module is 2.4M
including the Linear Projection and MHSA and MLP com-
ponents. In the MLCIL task, we add a KT token at the first
session and a KR token at each session. Assuming there are
a total number of 8 sessions, the amount of extra parame-
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Figure 1: Comparison results (mAP%) on PASCAL VOC.
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ters increased by only 9*384=3,456 (0.003M). Compared
with the overall parameters (about 30M), extra adding pa-
rameters almost could be ignored. Therefore, there is no
issue of excessive additional parameters caused by the incre-
ment of sessions, instead, our method is suited for long-term
incremental learning scenarios.

A.4. The Algorithms of DPL Module

As mentioned in our main paper, the algorithm of DPL is
presented in Algorithm 1.

A.5. More Comparison Results and Detailed

In order to demonstrate that KRT can achieve MLCIL
tasks without any pre-trained, effectively learning new
classes, we train KRT from scratch on a completely No pre-
trained model and compare with FT approach. The results
in Table 1 show that KRT exhibits significant improvements
even without any pre-trained in the model.

Pre-trained FT (Baseline) KRT (Ours)
Upper-bound
Model Last Acc  Avg Acc | Last Acc  Avg Acc
No 9.60 21.37 48.38 52.09 62.29

Table 1: Results (mAP%) on MS-COCO under the B40-C10.

Moreover, Figure 1 presents a comparison of VOC curves
on BOC4 and B10C2 benchmarks. Table 2 and Table 3
provide detailed per-session performance of different meth-
ods on COCO B0OC20 and BOC10 benchmarks, respectively.
Similarly, Table 4 and Table 5 illustrate the per-session per-
formance of various methods on COCO B40C10 and B40C5
benchmarks. Additionally, Table 6 and Table 7 display de-
tailed per-session performance of different methods on the
VOC B0C4 and B10C2 benchmarks.

A.6. More Visualization Results

We provide more visualization results of cross-attention
maps examples of the KR and KT tokens in Figure 2
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. sessions Average  Last mAP%

Method Buffer Size

1 2 3 4 mAP% impro.
FT [15] 0 86.50 54.6 26.53 27.88 51.38 47.37
iCaRL [14] 86.50 70.72 66.56 52.41 69.05 22.84
BIC [21] 86.50 75.16 68.08 51.51 70.31 23.74
ER[16] 86.50 6948 60.74 58.04 68.69 17.21

20/class

TPCIL [19] 86.50 75.13 67.81 6341 73.21 11.84
PODNet [5] 86.50 75.71 70.52  66.96 74.92 8.29
DER++ [1] 86.50 75.84 7328  68.17 75.95 7.08
KRT-R(Ours) 86.63 78.84 77.29 75.25 79.47 -

Table 2: Comparison results on MS-COCO dataset with BO-C20 benchmark

Method Buffer Size sessions Average  Last mAP%
1 2 3 4 5 6 7 8 mAP% impro.
FT [15] 0 9251 59.68 4123 31.86 22.03 23.07 1927 1693 38.33 53.24
iCaRL [14] 9251 73.62 6738 6020 52.19 43.63 4425 43.84 59.72 26.33
BIC [21] 9251 7953 7397 6416 57.17 4979 50.63  50.95 64.96 19.22
ER [16] 20/class 9251 7514 6134 56.83 4855 5144 4928 47.19 60.28 22.98
TPCIL [19] 9251 7786 69.12 6734 6285 6325 62.12 60.57 69.45 9.60
PODNet [5] 9251 7995 7345 6822 63.17 6298 60.36 58.82 69.93 11.35
DER++ [1] 9251 7923 7627 7068 68.88 67.12 64.16 63.11 72.74 7.06
KRT-R(Ours) 92.25 8130 77.26 74.69 7322 7280 70.61 70.17 76.54 -

Table 3: Comparison results on MS-COCO dataset with BO-C10 benchmark.

Method Buffer Size sessions Average  Last mAP%
1 2 3 4 5 mAP% impro.
FT [15] 0 82.88 2855 28.06 18.78 16.99 35.05 58.19
iCaRL [14] 8241 67.87 6340 5827 5574 65.61 19.44
BIC [21] 8241 7151 61.76 5552 5591 65.55 19.27
ER [16] 20/class 82.41 7079 66.58 6334 61.59 68.94 13.59
TPCIL [19] 8241 7262 71.65 68.62 66.54 72.37 8.64
PODNet [5] 82.41 7140 7076 6590 6422 70.96 10.96
DER++ [1] 8241 77.07 7392 68.11 66.31 73.56 8.87
KRT-R(Ours) 82.37 7954 7827 7595 75.18 78.26 -

Table 4: Comparison results on MS-COCO dataset with B40-C10 benchmark.



Method Buffer Size sessions Average  Last mAP%
1 2 3 4 5 6 7 8 9 mAP% impro.
FT [15] 0 8241 4574 1643 1759 13.6 1251 1099 1044  10.66 24.49 61.77
iCaRL [14] 82.41 74.1 62.8 60.4 61.6 56.4 54.9 54.8 53.9 62.37 18.53
BIC [21] 8241 7550 6135 56.13 5737 5294 52,17 5197 51.72 60.17 20.71
ER [16] 20/class 8241 7424 6658 6292 6388 61.03 6030 59.96 58.12 65.49 14.31
TPCIL [19] 8241 7491 7021 69.04 6835 66.25 66.01 6479 64.24 69.58 8.19
PODNet [5] 8241 7618 6821 6631 6645 6145 61.5 5998 58.89 66.82 13.54
DER++ [1] 8241 782 7415 70.09 67.03 619 6191 6297 62.14 68.98 10.29
KRT-R(Ours) 82.37 80.63 78.15 7646 7643 7434 73.62 7282 72.43 76.36 -

Table 5: Comparison results on MS-COCO dataset with B40-C5 benchmark.

Method Buffer Size sessions Average  Last mAP%
1 2 3 4 5 mAP% impro.
FT [15] 0 99.25 94.16 8551 68.67 62.88 82.09 20.55
iCaRL [14] 99.25 95.03 88.31 81.16 72.38 87.23 11.05
BIC [21] 99.25 9448 8629 81.83 72.24 86.82 11.19
ER [16] 2elass 99.25 95.05 89.22 756 7149 86.12 11.94
TPCIL [19] 99.25 951  88.04 7815 7735 87.58 6.08
PODNet [5] 99.25 9564 88.71 80.28  76.60 88.09 6.83
DER++ [1] 99.25 9535 89.02 80.13  76.05 87.96 7.38
KRT-R(Ours) 99.77 96.06 89.06 8543 83.43 90.73 -

Table 6: Comparison results on PASCAL VOC dataset with BO-C4 benchmark.

Method Buffer Size sessions Average  Last mAP%
1 2 3 4 5 6 mAP% impro.
FT [15] 0 97.09 8697 8249 61.65 49.54 43.01 70.12 37.45
iCaRL [14] 97.09 89.32 8437 69.74 66.63 66.70 78.98 13.76
BIC [21] 97.09 8994 8533 76.03 72.04 69.71 81.69 10.75
ER [16] Selass 97.09 8933 87.74 76.86 69.26 68.58 81.48 11.88
TPCIL [19] 97.09 88.19 82.79 7444 70.69 70.77 80.66 9.69
PODNet [5] 97.09 89.89 8559 7213 71.18 7135 81.21 9.11
DER++ [1] 97.09 8944 87.72 7636 7297 70.64 82.37 9.82
KRT-R(Ours) 97.64 9352 8842 8510 81.28 80.46 87.73 -

Table 7: Comparison results on PASCAL VOC dataset with B10-C2 benchmark.



Raw Image KT Token KR Tokens

Session] Session2

-

person, surfboard person, surfboard person surfboard

clock, dining table clock, dining table clock dining table

-

sink, toilet sink, toilet sink toilet

-

bird, dog bird, dog bird
frisbee, person frisbee, person frisbee person
car, stop sign car, stop sign car stop sign

bottle, bowl, broccoli bottle, bowl, broccoli bottle bowl

Figure 2: Visualization of ICA module.
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