
Supplementary Materials:
One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training

1. Algorithm Outlines

Algorithm 1 An effective solution to the BIP
Input: The original quantized DNN model f with weights
Θ,Bo, target sample x∗ with source label s, target class t,
auxiliary sample set D = {(xi, yi)}Ni=1, hyper-parameters
λ1, λ2 and k.
Output: b̂ and b.

1: Initialize b̂0, b0, u0
1, u0

2, u0
3, u0

4, z0
1 , z0

2 , z0
3 , z0

4 ;
2: Let r ← 0 ;
3: while not converged do
4: Update b̂r+1;
5: Update ur+1

1 and ur+1
2 ;

6: Update br+1;
7: Update ur+1

3 and ur+1
4 ;

8: Update zr+1
1 , zr+1

2 , zr+1
3 and zr+1

4 ;
9: r ← r + 1.

10: end while

2. Experiment Setups
Target Models. We provide information about target mod-
els which are in the floating-point form before quantization.

Table 1. Information of target models.

Dataset Model Accuracy (%)
Number of

all parameters
Number of

target parameters

CIFAR-10
ResNet-18 95.25 11,173,962 1,024
VGG-16 93.64 14,728,266 1,024

ImageNet
ResNet-34 73.31 21,797,672 1,024
VGG-19 74.22 143,678,248 8,192

Detailed Settings of TBA. Having described how the hy-
perparameters λ1, λ2, k, and N are set, we provide the de-
tailed configuration of the hyperparameters associated with
the ℓp-Box ADMM algorithm. To begin, we duplicate the
parameters of the last fully-connected layer twice to obtain
the target parameters b̂0 and b0. We then initialize the addi-
tional parameters and the dual parameters by assigning u0

1,
u0
2, u0

3, u0
4 to b0 and setting z0

1 , z0
2 , z0

3 , z0
4 to 0. During

the process, we adopt a learning rate of 0.005 and 0.01 in
CIFAR-10 and ImageNet, respectively, to update b̂ and b for
three inner rounds in each iteration. The optimization pro-
cess is allowed to continue for up to 2,000 iterations. For the
ADMM algorithm, the penalty parameters ρ1, ρ2, ρ3 and ρ4

are identically set to 0.0001 and increase by multiplying a
factor of 1.01 every iteration until a maximal value of 50 is
reached. From all candidates couples of b̂i and bi, we select
the closest couple that can classify the target sample x∗ to
the target class t and the source class s, respectively. Note
that no additional samples are used to appropriate the accu-
racy of candidate models when choosing Mr and Mf . The
optimization process will end if one of the following three
conditions is met:
• The maximal number of 2,000 iterations is reached.
• No improvement is gained for 300 iterations.
• The constraints b̂ = u1, b̂ = u2, b = u3 and b = u4

are all satisfied with distance less than 0.0001.
Implementation Details of Baselines. We include four
baseline attacks to compare with our TBA. We try our best
to make the experiment settings fair for all attacks. Besides
fixing target models and target samples the same, we pro-
vide the same 128 and 512 auxiliary samples respectively
in CIFAR-10 and ImageNet for each attack. To align with
our threat model, we adjust their attack goals to the same
sample-wise targeted attack as our TBA. Fine-tuning and
FSA [3] are all designed for updating the parameters of full-
precision floating-point models. Since the target model has
been deployed, its step size should be fixed, causing the in-
validity of quantization-aware training. We adjust these two
methods to directly attack models which have been quan-
tized to 4/8 bit-width. Fixing the step size of the target
model unchanged, we optimize the parameter in the grain of
each bit continuously while testing the attack performance
and calculate the Nflip discretely by transforming the bits
to 0-1 form in the following way:

b =

{
1 if x ≥ 1

2 ,
0 if x < 1

2 .
(1)

We adopt the l0-regularized form of FSA [3], which can
help limit the increment of Nflip in theory. T-BFA [2] is
a class-specific targeted attack, which aims to misclassify
samples from the source class as the target class. We trans-
form it into a sample-specific attack and restrict it only to at-
tacking the bits of the final fully-connected layer. TA-LBF,
which also involves an ADMM-based optimization process,
gets all hyperparameters strictly following [1]. In the sce-



(a) ASR (b) ACC (c) Nflip

Figure 1. Results of sensitivity to different source and target classes. In these heatmaps, each row stands for a source label and each column
represents a target label. The value in cell (i, j) is calculated by averaging those of 100 attack instances with source class as i and target
class as j. The lighter color means a better result.

nario of deployment-stage attacks, the original model Mo

is released. ASR is the ratio of the cases where a mali-
cious model can be successfully obtained utilizing baseline
attacks, ACC is the averaged accuracy of all post-attack ma-
licious models, and Nflip is the averaged number of bit-flips
that is required to convert Mo to the malicious model.

3. Exploratory Experiments
3.1. Sensitivity to Different Target Classes

In the main experiments, we randomly assign target class
t for each selected target sample x∗, the good results of
which demonstrate that the performance of TBA is not de-
pendent on the choice of the target sample and target class.
In this part, we further explore the impact of target class t on
the performance of TBA at the label level. To achieve it, we
choose 100 random samples from each class of the CIFAR-
10 dataset, and utilize TBA to misclassify them to the other
nine classes. The final results are shown in Figure 1. With
the default settings, TBA can attain an almost 100% attack
success rate regardless of the choice of target class. The
choice of target class influences the ACC of attacked model
Mf a lot. For example, observing the fourth row of Figure
1(b), we find that the ACC drops sharply when misclassify-
ing samples collected from class 3 to class 0 compared to
other choices of target class. Besides, the performance of
TBA is concerned with the choice of source class as well.
Attacking samples of class 2 can always render models with
high accuracy while attacking those of class 3 will yield
models with relatively low accuracy. Nflip, which is 1.17
in best cases and 1.94 in worst cases, is also related to the
choice of source and target class. The differences in ACC
and Nflip can be attributed to the risk level of the target
model. We assume that target model is naturally at high
risk when faced with certain target samples, due to its im-
balanced ability to predict samples of different classes. In
conclusion, the performance of TBA is related to but not

dependent on the choice of target class.

3.2. Loss Curve of the Optimization Process

As stated in Section 3.3 of the main manuscript, b and
b̂ get alternately updated in each iteration. So we observe
the loss curve respectively after b̂ and b get updated in the
i-th iteration. As shown in Figure 2, at the start of the op-
timization process, it is inevitable that the accuracy-related
loss term Lb increases a little since b and b̂ are moving to-
wards a high-risk area. At the rest of the process, Lb re-
mains at an acceptable level with the help of auxiliary set
D. The loss term Ld, which measures the distance between
b and b̂, keeps fairly small during most of the optimization
process, which demonstrates that b and b̂ are closely bond
across the process and satisfies the requirements for effi-
ciency as wanted. The loss term Lm and the loss term Li,
which respectively force the b̂ and b to classify the target
sample x∗ to target class t and ground-truth class s show
reverse patterns in the two curves because these two terms
are just optimized respectively by updating b̂ and b. Taking
Lm as an example, it is minimized when updating b̂. How-
ever, when b gets updated, b̂ will be attracted to follow it for
the existence of the distance-related loss term Ld, in which
case, Lm will probably become larger. In conclusion, the
updates of b̂ and b will take over the optimization process
in turn, causing its related loss terms minimized but its un-
related loss terms to fluctuate. In several cases, the Li ends
up with a high value for that b can be conducted by b̂ to the
side of malicious parameters.

3.3. Statistics of Running Time

We analyze the running time of the three standard bit flip
attacks against quantized models, whose official codes can
be accessed. We present the average time used to attack an
8-bit quantized ResNet-18 model with 1,000 different tar-
get samples. As shown in Table 2, in CIFAR-10, the heuris-
tic method T-BFA outperforms the two optimization-based



Figure 2. Loss curves.

Table 2. The running time of attacks.

Dataset Model
Time Cost (s)

T-BFA TA-LBF TBA (ours)

CIFAR-10
ResNet-18 12.68 673.49 16.07
VGG-16 3.43 214.65 15.11

ImageNet
ResNet-34 30.88 205.71 25.12
VGG-19 159.86 258.18 76.79

methods, TA-LBF and TBA. The running time of T-BFA
is highly correlated with the number of bit-flips for it will
flip bits one by one until success. For example, attacking
VGG-16 utilizing T-BFA costs only 3.43 seconds because
it needs only 8.75 bit-flips on average to succeed. For the
two optimization-based methods, the time to finish a com-
plete optimization process of TBA is approximately twice
that of TA-LBF because the number of parameters involved
in TBA is twice that in TA-LBF. However, TA-LBF has to
determine suitable hyperparameters in the manner of grid
search, making it more time-consuming. For ImageNet,
it is usually required to flip more bits to succeed, and our
TBA performs better than the other two methods in time ef-
ficiency, which can further demonstrate its threat in more
complicated tasks. Note that attacking ResNet-34 is more
costly than attacking VGG-19 because VGG-19 has a larger
number of target parameters as shown in Table 1.

3.4. Training-assisted Baselines

In the main experiments, we compared only to
deployment-only BFAs since training-assisted extension is
one of our core contributions. However, we also consider
comparing our TBA to the training-assisted variants of T-
BFA and TA-LBF (FT and FSA cannot be extended) on
CIFAR-10 with 8-bit quantized VGG. As shown in Table 3,
TBA is on par with or even better than all training-assisted
baselines on all metrics.

Table 3. Comparison to the training-assisted variants of baselines.
Data points marked in red denote a relatively worse performance.

Method ASR (%) Nflip-r ACC (Mr) Nflip-f ACC (Mf ) Time (s)
T-BFA 100 7.75 90.73 1.01 87.84 38.14

TA-LBF 78.3 7.67 92.66 1.15 89.23 59.89
TA-LBF-GS 97 10.33 92.93 1.01 90.53 545.26

Ours 100 11.25 92.43 1.04 89.03 39.02

4. Discussions About the Threat Model
Our approach differs from the previous BFAs in that we

assume the adversary has the access to the training stage
and further has the ability to decide the model to be re-
leased, which provides a valid reason for the white-box set-
ting generally postulated but without detailed explanation
in deployment-time bit flip attacks. In prior BFAs, third-
party adversaries usually utilize white-box information like
gradients to search for critical bits of the target model’s pa-
rameters to inject malicious functionality.

We assume the adversary can implement such a training-
assisted attack in at least two cases: (1) The adversary is an
insider of one development project, who is in nature able
to manipulate the training stage; (2) Utilizing outsourced
models is a common phenomenon in the domain of deep
learning. In this case, similar to the scenario of backdoor
attacks, the adversary can act as an outsider, who releases a
high-risk model Mr to the Internet and waits for the victim
users to download and then deploy it.

References
[1] Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng

Li, and Shu-Tao Xia. Targeted attack against deep neural net-
works via flipping limited weight bits. ICLR, 2021.

[2] Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali
Chakrabarti, and Deliang Fan. T-bfa: Targeted bit-flip adver-
sarial weight attack. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(11):7928–7939, 2021.

[3] Pu Zhao, Siyue Wang, Cheng Gongye, Yanzhi Wang, Yunsi
Fei, and Xue Lin. Fault sneaking attack: A stealthy framework
for misleading deep neural networks. In DAC, 2019.


