
8. Appendix
The full MatSim dataset and benchmark, as well as gen-

eration code and trained models have been made available
in these URLs:

GIT
https://e1.pcloud.link/publink/show?code=kZIiSQZCYU5M4HOvnQykql9jxF4h0KiC5MX
https://icedrive.net/s/A13FWzZ8V2aP9T4ufGQ1N3fBZxDF
https://zenodo.org/record/7390166.Y6cNIBBxH4

9. Building the MatSim Dataset
9.1. Setting objects in the scene

Objects for the dataset were taken from the ShapeNet
core2 dataset [12], which has 56000 3D model objects with
over 200 categories. Each object is loaded, randomly scaled
and rotated, and its original materials are removed. In addi-
tion, overlapping faces on the surface are removed.

9.2. UV mapping

Since the SVBRDF (PBR) materials are given as 2D
texture maps, assigning a material to a 3D object involves
wrapping these 2D maps around the object’s surface. Wrap-
ping 2D maps around complex 3D objects (UV mapping)
is a rather complex problem. Blender 3.1 contains some
automatic wrapping techniques, which we use. A major
problem that we encounter is that many objects contain
overlapping faces (surfaces), which causes the textures to
be wrapped around the same areas several times, causing
strong unrealistic visual artifacts. We managed to solve
this by removing vertices and faces that were too close to
each other using the remove overlapping vertexes tool of
Blender. This led to a slight deformation of the shapes of
some objects. The wrapping itself depends on various pa-
rameters, such as the relative scale, orientation, and transla-
tion of the texture map relative to the object, as well as the
coordinate system. We randomize all of these parameters
between each image to achieve maximum variability.

9.3. Background Illumination and HDRI

The environment and illumination greatly affect the ap-
pearance of a material. The main method used by the CGI
community to control the background and illumination in-
volves high dynamic range images (HDRIs). These are
panoramic images that wrap around the scene and provide
360 illumination. The range of light intensities is from 0
to 6550, compared to 0 to 255 in standard images. This
allows HDRIs to represent a much wider range of illumi-
nation. We downloaded more than 500 HDRIs from the
polyhaven repository [3]. These HDRIs are highly diverse
scenes that cover both daytime and nighttime conditions in
a large number of indoor and outdoor environments. These
HDRIs were used to add both illumination and background

Figure 8. A Set of the MatSim dataset with materials inside trans-
parent containers. The set structure is described in Section 11.2
and Figure 12. The vessel generation is described in Sec. 11.4

to the scenes. To increase diversity, the HDRIs were ran-
domly rotated and scaled, and their intensities were ran-
domly increased or decreased for each scene.

9.4. Adding Ground Plane and Background Objects

Random objects were scattered in the scene to make the
environment more diverse and add shadows and back re-
flections. This was done by loading random objects from
the ShapeNet data set and randomly scaling, rotating, and
positioning them in the scenes. In addition, a ground plane
was generated by adding a flat plane below the object and
assigning a random PBR material to it.

9.5. Limitation of the Synthetic Dataset

A major limitation of the dataset is that phase transitions
between materials are often not the average between the two
states; instead, they are either completely different states
(the transition between wood and coal is fire) or they are
not uniformly distributed, like the nucleation of ice in water.
Both cases are not completely addressed by the dataset and
require further work. In addition, the natural image bench-
mark contains relatively few near-field examples.

9.6. Data Augmentation

A major problem with using only simulated data for
learning is the fact that modern cameras significantly mod-
ify an image’s appearance by smoothing and adjusting col-
ors. To account for this, we use extensive augmentation
for the image during training. This includes random Gaus-
sian smoothing, the darkening or brightening of the image,

https://github.com/ZuseZ4/MatSim-Dataset-Generator-Scripts-And-Neural-net
https://e1.pcloud.link/publink/show?code=kZIiSQZCYU5M4HOvnQykql9jxF4h0KiC5MX
https://icedrive.net/s/A13FWzZ8V2aP9T4ufGQ1N3fBZxDF
https://zenodo.org/record/7390166#.Y_6cNIBBxH4


partial or complete decoloring (to grayscale), and noise ad-
dition. Each of these augmentations was applied for about
10%-20% of the image, regardless of whether other aug-
mentations were used. Resizing, cropping, and flipping
were performed on almost every image. Combined, this
led to an improvement in accuracy of more than 10%-30%
(compared to the nonaugmented version).

9.7. Data sampling

Sampling is done by choosing one set for each batch and,
from this set, choosing 12 random images (without repe-
tition). Sets with materials inside and outside transparent
vessels were selected with equal probability.

9.8. CGI Assets From Artist Repositories

One of the main challenges in creating the MatSim
dataset was collecting enough large and diverse examples
of backgrounds, objects, and materials. Large-scale repos-
itories of assets that serve the CGI artist community have
been available for a while, but remain almost unutilized by
the machine-learning community. Utilizing these reposito-
ries made it possible for us to create a wide range of scenes
on a large scale and with sufficient diversity; this would
have been very difficult if we had created these data our-
selves. The main three repositories used for this work were
CGBookCases [38] and FreePBR [2] for materials, HDRI
Haven for environments and light, and ShapeNet for ob-
jects.

9.9. Blender Render Setting and Hardware.

The dataset was rendered using Blender 3.1, with CY-
CLEs rendering, 120 rendering cycles per frame per, images
were created with 800X800 resolution and noise reduction
mode (smoothing). Nvidia RTX 3090

9.10. Realism vs. Generality in the Dataset Creation

There are two ways to go about generating a synthetic
dataset. One approach is to make the dataset as realistic as
possible by maximizing the similarity of the generated data
to the real world. The other approach is to maximize vari-
ability and make the scenes as diverse as possible, even at
the cost of realism. In this work, we prefer variability over
realism, which means that we assign random materials to
random objects and set them in random environments. For
example, an image in the dataset may contain a car made of
wood on the ground made of metal in a forest surrounded
by random objects. This makes the dataset easier to gen-
erate and helps the network achieve a much higher level of
generalization and identify materials regardless of the envi-
ronment or the object on which they appear.

Figure 9. Training and loss function. The loss function is based
on cosine similarity with cross-entropy loss. For every three im-
ages in the batch, one image is defined as an anchor (A). A second
image, specifically the image that has material more similar to the
anchor (Section 4.2), is defined as positive (P ), and the third im-
age is defined as negative (N ). All images and material masks
are passed through the neural network to produce descriptors (Da,
Dn, Dp). The cosine similarity is calculated between the descrip-
tor of the anchor and the positive and negative examples. These
cosine similarities are the input for the softmax function, which
returns the probability of a match between the anchor and the pos-
itive image (Pp). If this probability is below the threshold defined
as 0.5+(sim(A,P )−sim(A,N)) ·0.25, we calculate the cross-
entropy loss (Loss = (− log(Pp)); otherwise, the loss is set to
zero. sim(A,P ) = 1− |R(A)−R(P )| is the similarity between
the anchor (A) material and the positive material P , R(A) is the
mixture ratio in material A (Section 11.3).

10. Training and Architecture

We examined several standard image encoder architec-
tures and found that ConvNeXt [20] gave the best results.
Two modifications were made in ConvNeXt: First, the net-
work input was changed from a standard three-channel im-
age (RGB) to an image plus the mask of the region con-
taining the material. This was done by simply adding the
ROI mask as another layer to the RGB image and changing
the first layer of the network so that it could receive a four-
layer image (R, G, B, mask) instead of a three-layer im-



age (RGB). In addition, the final linear layer of ConvNeXt
was changed to produce a 512-value vector (instead of 1000
ImageNet classes). This vector was then normalized using
L2 normalization and used as the output descriptor. The
training itself was done using the AdamW optimizer for ten
epochs (200000 steps with a batch size of 12) using a single
RTX3090. This took around three days per training session.
We used the ConvNeXt base model trained on ImageNet.

10.1. General Loss Function

The loss function is described in Figure 9. Similar to
recent works, we use cosine similarity combined with cross-
entropy loss for training [13]. An important aspect of our
data set is that the levels of similarity between materials are
continuous and can have any value between zero and one
(depending on the mixture; Figure 12). This was accounted
for by using a semi-hard loss with a threshold depending
on the similarity level. We found that a semi-hard loss, in
which only loss terms that are below some threshold are
used, works better than a hard loss (in which all loss terms
are used). In this case, the threshold was controlled by the
difference in similarities between the anchor material and
the positive and negative examples.

10.2. Material Similarity

We define the real similarity of the two materials as the
difference between their mixture ratios (R, Figure 12). As
described in Section 11.3, each material in a set is a linear
mixture between two materials A and B. We define this ra-
tio as R(0 < R < 1). The similarity between the materials
in the two images (i1 and i2) is defined as:

sim(i1, i2) = 1− |R(i1)−R(i2)|

Where R(i1) is the mixture ratio in image i1 (Section 11.3).
Assuming both images are from the same set.

10.3. Predicted Material Similarity

The predicted material similarity between two images,
A and N , is calculated by first passing the images and their
corresponding masks through the neural network and pre-
dicting the descriptors Da and Dn, which are then nor-
malized using L2 normalization. The predicted similarity
is the cosine similarity between the two descriptors (San,
Figure 9).

10.4. Loss Calculation

The training was performed as shown in Figure 9: For
each batch, we randomly selected a single set (Section 11.2)
and sampled 12 random images from this set. The loss for
every three images in the batch was calculated separately
using the procedure shown in Figure 9. One of the three im-
ages was chosen as an anchor (A). The similarity between

the material in the anchor image and the other two images
was calculated as described in Section 10.2. The image that
was more similar to the anchor was defined as positive (P ),
and the other image was defined as negative (N ); hence,
sim(A,P ) > sim(A,N). If the similarities of the anchor
to the two images were equal (sim(A,P ) = sim(A,N)),
the loss for this triplet was set to zero. Next, each of the
three images and their material masks were passed through
the neural net to predict the material descriptors (Section 10,
Figure 9). The cosine similarities between the descriptors of
the anchor and the negative and positive images were calcu-
lated as described in Section 10.3. These similarities were
then passed to a softmax function to calculate the probabil-
ity of a match between the anchor and the positive image:

Pp =
eSap/t

eSap/t + eSan/t
. (1)

Sap and San are the cosine similarity between the anchor
(A) and the negative(N ) and positive(P ) descriptors, re-
spectively, Pp is the probability for a match between the an-
chor and the positive image, and t is a constant (0.2 in our
case). We then calculate the semi-hard loss using the fol-
lowing condition: If Pp > 0.5+(sim(A,P )−sim(A,N))·
0.25, the loss is set to zero; otherwise, we calculate the stan-
dard cross-entropy loss (Loss = −log(Pp)).

11. The MatSim Synthetic Dataset Generation,
UNCUT

Note that this section is the same as Section 3 in the
main paper, but a little longer with some paragraphs and
images that were removed from the original section appear-
ing here. The goal of the MatSim dataset is to train a com-
puter vision system capable of recognizing any visually dis-
tinguished material state and texture on any surface in any
reasonable environment. The visual appearance of a mate-
rial depends not only on its physical properties but also on
the object’s shape, environment, and illumination. If dur-
ing training, any of these properties are restricted in some
way (for example, only indoor scenes are used) or corre-
lated with other properties (for example, wood materials
only appear on trees), the net is unlikely to achieve a true
generalization for material recognition [5, 18].

11.1. Generation Procedure

In order to achieve the above goals, the dataset needs
to be extremely diverse in terms of objects, environments,
and materials. To achieve this, we utilize large-scale CGI
artist repositories [1, 38] used for animation, and computer
games. We use thousands of highly diverse physics-based
rendering materials (SVBRDF / PBR) repositories to simu-
late realistic materials [25]. We overlay the textures mate-
rials on 3D objects taken from the ShapeNet dataset with



Figure 10. Samples from the second benchmark: uncorrelated ma-
terials and objects. Random materials cover random objects to
avoid material and object correlation. Each row corresponds to one
type of material. For clarity, a red square was used to mark the ma-
terial in each row (This doesn’t appear in the actual benchmark).
Material masks are not shown but are available in the benchmark.

tens of thousands of different objects [12] and hundreds
of categories; these objects are then placed in scenes with
random illumination and backgrounds utilizing the Polyh-
Haven repository for HDRI images [3]. The HDRI im-
age is wrapped around the scene and provides a realistic
360-degree background and illumination to the scene (Fig-
ure 11). Combining these repositories allows us to gener-
ate a large-scale, highly diverse dataset (Figure 11). The
large number of materials forces the network to generalize
instead of identifying only specific classes. The fact that ev-

Figure 11. Dataset creation: 1) CGI Materials have been randomly
created or downloaded from large-scale artist repositories (CG-
BookCases [38], FreePBR [2]). 2) The material is UV mapped on
the surface of a random object loaded from the ShapeNet dataset
[12].3) Random background and illumination are loaded from the
HDRI Haven repository [3]. 5) Ground plane and background ob-
jects are added. 6) and the scene is rendered.

ery material can be used on any object in any environment
means that the net has to identify the material everywhere
and prevents the net from associating the material with spe-
cific objects or environments. Gradual transformations be-
tween materials in the dataset allow the net to detect gradual
transitions between materials. Additionally, rendering some
of the materials inside transparent containers allows the net-
work to learn to recognize materials stored inside glass ves-
sels.

11.2. General Dataset Structure

The dataset is divided into sets; each set contains two
random materials and six scenes involving a gradual tran-
sition between these two materials (Figure 12). The ob-
jects, backgrounds, and environment are randomly selected
for each scene separately (Figure 11). Each scene involves
one static main object and a static camera, which are both
positioned randomly, and both remain unchanged for the
scene (Appendix 10.1). The object’s material is gradually
changed between images in the scene (Figure 12). For
each scene, we rendered five images with different mix-
tures of the two materials. The mixture ratios (R) of the



Figure 12. Dataset structure. The dataset is composed of sets.
Each set involves two materials and six scenes with a gradual tran-
sition between the two materials. Each image column corresponds
to a different mixing ratio (R) of the two materials. The ratio of the
mixture of the two materials is given in the top column. All images
in the same column involve the same material mixture on differ-
ent objects and in different environments. Each of the six scenes
involves one main object. The material on this object gradually
transitions from one material to another. The mask of the object
is given in the right column. For scenes 1–2, the background re-
mains exactly the same for all images in the scene. For scenes
3–4, the background HDRI is randomly rotated between images,
leading to small changes in illumination. For scenes 5–6, the back-
ground HDRI is completely replaced between images, leading to
large changes in illumination.

two materials are 0%, 25%, 50%, 75%, and 100%. With
0% means that the object is only made of material A, while
100% means that the object is completely made of mate-
rial B, and 50% indicates an equal mixture of the two ma-
terials (Section 11.3). For scenes 1–2, all aspects of the
scene remain the same. Only the object material is grad-
ually changed between images. Furthermore, the transla-
tion and rotation of the texture UV mapping to the object
were randomly changed between each render (Appendix
10.2). For scenes 3–4, the procedure is the same, except
that the HDRI background is randomly rotated between im-
ages (Appendix 10.3), leading to a small variation in illu-
mination. For scenes 5–6, the HDRI background for each
image is randomly replaced, leading to a large variation in
illumination. This provides almost any possible variation
of the appearance of each material. Since all the scenes in
a set are composed of the same two materials, it is possi-
ble to compare the appearance of the materials between two
scenes with different objects and backgrounds, and light.

The gradual transition allows the network to learn to distin-
guish between highly similar materials. Some scenes con-
tain several random objects and a ground plane for variabil-
ity (Appendix 10.4). Since a scene can contain many back-
ground objects, for each scene, we provide the mask (re-
gion) of the object on which the material is used (Figure 12,
right). If the material is uniform (BSDF), the values of the
material properties (color, transparency, etc.) are given in
the dataset. Altogether, 30k sets, with about 1 million im-
ages, were rendered.

11.3. Materials Representation, Mixtures and
Gradual Transformations

The appearance of materials is mostly controlled by
their surface-scattering properties. These properties are of-
ten referred to as bidirectional reflectance (BRDF) and the
more general bidirectional scattering function (BSDF) Fig-
ure 13a) [4, 6]). Each surface point has a set of properties,
such as roughness, transmittance, and color, that determine
the surface appearance. If the material is uniform, it could
be represented as a set of values for each property across
the entire surface. In Blender3D [9], this is done using the
BSDF node (Figure 13a). Creating a random material could
be done by setting a random value for each property. Mix-
ing two such materials can be achieved by using a weighted
average of the values of each property from each material:
Pmix = R · Pa + (1 − R) · Pb where P is the value of a
property in materials a,b and R the mix ratio. Gradual tran-
sition between materials is achieved by creating different
mixture ratios (R = 0, 0.25, 0.5, 0.75, 1 Figure 12). Most
materials in the world are not uniform and have unique tex-
tures, which means different properties for each point on
the surface Figure 13b. Such materials can be represented
as spatially variable BRDF or SVBRDF (often called PBR
materials [25]). This means that instead of a single value
for each property, we have a 2D texture map that repre-
sents the spatial distribution of this property on the surface
(Figure 13b). This 2D map is then wrapped around the ob-
ject using a process called UV mapping to give each sur-
face point its property. Mixing two textured materials is
achieved by a pixel-wise weighted average of two texture
maps into a new texture map. In other words, each pixel
in the texture map of a given property is the average of the
corresponding pixels in the two materials that are mixed:
Pmix(u, v) = R·Pa(u, v)+(1−R)·Pb(u, v). Where P (u, v)
is the property in surface position u,v. Gradual transition
between materials A and B is again achieved by different
mixtures ratios(R). In order to increase variability, texture
maps of different materials can be rotated and rescaled rel-
ative to the other material before mixing (but not relative
to maps of the same material). Unlike uniform BSDF tex-
tures, it’s not possible to create textures by assigning ran-
dom values, as this will just create noise. We, therefore, got



Figure 13. A material’s visual appearance is controlled by several
main properties (color, transparency, etc.). For uniform materials
(BSDF), each property has a single value across the surface. Tex-
tured materials are represented by texture maps for each property.
These maps are wrapped around the object (UV mapping) and pro-
vide properties for each point on the object’s surface.

Figure 14. Procedurally generating material inside transparent
containers. a) A random 2D curve is generated by combining ran-
dom polynomial and trigonometric functions. b) The curve is used
as a profile for the symmetric 3D object. c,d) The object is as-
signed random transparent materials and content objects. e) The
content object is assigned a material.

a large number of textured materials by downloading 4400
textures from free large-scale artists’ repositories. These
are highly diverse realistic materials scanned or generated
for CGI purposes. To further increase this set, we mix two
or more materials as described above.

11.4. Materials in Transparent Vessels

Liquids and other materials in kitchens, hospitals, and
labs are usually handled inside transparent containers
(glassware, flasks, tubes, etc.). To support these applica-
tions, we generated scenes in which we put the material
inside a transparent container. The vessel object was pro-
cedurally generated. The curvature of the transparent vessel
was generated by creating a random 2D curve (by randomly
combining linear, polynomial, and trigonometric functions;
Figure 14). This curve was used as the profile of a symmet-
ric vessel by creating a cylindrical (or other symmetrical)
shape with the curve as the vertical profile (Figure 14). In
some cases, the shape was also randomly stretched to create
more variability. The vessel object was assigned a random
transparent material and a random thickness. The content of
the vessel was either a random object loaded from ShapeNet
or a mesh that filled the bottom part of the vessel (similar
to static liquid or powder). As before, the content was as-
signed a random material. Otherwise, the creation of the
data set was the same as in Section 11.2. Examples can be
seen in Figure 8 (Appendix).
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