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1. More Related Work

Contrastive Learning. Recently, unsupervised learning
approaches based on contrastive learning have drawn the
most attention due to their outstanding performance [12].
Contrastive learning aims to learn an encoder ϕ to maxi-
mize the mutual information between the different views of
one instance and thus obtain the representations that contain
all shared information, such as semantics [1, 3, 4, 10, 18].
Conventionally, the goal is achieved by constructing posi-
tive and negative pairs and embedding the instance(anchor)
close to the positive instance while pushing it away from the
negative instance in training [6]. Specifically, the positive
pairs are usually the local patches and the whole images or
the different augmentations of the same instance, while the
negative ones are all the remaining instances. Consequently,
the instances with the same semantics are aligned and thus
benefit the downstream tasks. Here we briefly introduce
two classical contrastive learning approaches, NCE [18] and
SimCLR [3].
i) NCE. NCE [18] is an instance-level discrimination ap-
proach, which first incorporates contrastive loss(NCE loss)
to discriminate different instances. Specifically, NCE con-
siders each instance as a distinct class of its own and train
the encoder to distinguish between all individual instance.
Many objectives are equivalent to the NCE [1, 3, 4, 10] and
prove that NCE is the lower bound of the mutual informa-
tion [10], denoted by I, as formulated in Eq.1.

I(X;X+) ≥ INCE(X;X+) = − 1

|X−|+ 1
EX,X+,X−[

log
exp (f(x,x+))

exp (f(x,x+)) +
∑

x−∈X− exp (f(x,x−))

]
,

(1)
where x, x+, and x− are realizations of three random vari-
ables, X , X+, and X−. The x, x+, and x− are called
the anchor, positive instance, and negative one, respectively;
f(·, ·) = cos(·, ·), ∥x∥ = 1. Note that the positive and neg-
ative instances are generated by a memory bank that stores

all the representations in training.
ii) SimCLR. SimCLR [3] simplifies the contrastive loss by
only comparing the instance in a batch and considers the
augmentation of the instance as the positive one. Assume
that the batch B contains N instances. Then, SimCLR con-
ducts augmentations, such as random crop, color jitter, and
horizontal, to batch B and obtains the augmented batch B̃
consisting of 2N instances. Consider the instance x̃ from
B̃ as the anchor, and the positive one is x̃+. The negatives
are all remainder 2N − 2 instances in B̃. Then, the loss of
SimCLR is defined as Eq.2.

LSimCLR = − 1

2N
EX

[
log

exp (f(x̃, x̃+))∑
x̃−∈B̃− exp (f(x̃, x̃−))

]
.

(2)
In our study, we adopt the encoder that is optimized

by Eq.2 as the teacher model to learn a robust representa-
tion space.

2. A Theoretical Derivation
Essentially, the Eq.1 is a cross-entropy loss that aims to

classify the positive instance correctly. Then, the optimal
probability of the NCE loss can be defined as Eq.3 [10].

P (zj |X, zi)

=
p(zj , X|zi)∑N
r=1 p(zr, X|zi)

(3)

=
p(zj |zi)Πl ̸=jp(zl)∑N
r=1 p(zr|zi)Πl ̸=rp(zl)

=

p(zj |zi)
p(zj)∑N

r=1
p(zr|zi)
p(zr)

,

where zi and zj indicate the representation of xi and xj ,
respectively, and xj is the positive instance of xi.

The denominator of the NCE loss is a constant, as well
as Eq.3, and thus we can obtain Eq.4.



exp{f(zj , zi)} ∝ p(zj |zi)
p(zj)

, (4)

Then, the Eq.4 can be further denoted as Eq.5.

f(zj , zi) ∝ log

[
p(zj)|zi)
p(zj)

]
. (5)

Therefore, the inner product of zi and zj is proportional to
the point mutual information between them.

3. Polynomial Decay
This section provides the details about polynomial decay,

which is used to dynamically adjust the α, and then reduce
the gradually increased negative effect from unknown cate-
gories with the training. Then, the polynomial decay in our
work is formulated as (6).

α = α0 × (1− i/I)
2 (6)

where α0 is the initial value of α, i indicates the i-th update
the α, and the I means the times to decrease α until it reach
to 0. In our experiments, I is fixed as 5. Consequently, α
decreases with the iteration increasing, preventing the inva-
sion from unknown categories.

4. Experiments
This section introduces some additional experimental re-

sults and dataset details.

4.1. Dataset Details

CIFAR10 and CIFAR100. The target and unknown cat-
egories in CIFAR10 and CIFAR100 are shown in Tables 1
& 2, respectively, and the target ones in highlighted in bold.

Cross-dataset. Cross-dataset comprises subsamples
from CIFAR10, CIFAR100, Flowers [9], Food-101 [2], and
Places-365 [19]. Flowers has 8189 images with 102 cate-
gories, each containing images between 40 to 258. Food-
101 has 101,000 images from 101 categories, while Places-
365 comprises 1,803,460 training and 36,000 validation im-
ages from 365 classes. In the cross-dataset, six classes
of animals (“bird,” “cat,” “dog,” “deer,” “frog,” “horse”)
in CIFAR10 are seen as target one, while the other 668
classes from four external datasets (i.e., CIFAR100, Flow-
ers, Places-365, Food-101) are unknown categories.

4.2. Experiments on More Mismatch Proportions

To further explore the performance of WAD, we evalu-
ate it with 0% and 100% mismatch proportions. The 0%
mismatch proportion means the unlabeled data contains no
instance with unknown categories, while all instances are
from unknown categories when the mismatch proportion is
100%. The results are shown in Tables 3 & 4.

From Tables 3 & 4, we have five findings. i) WAD sur-
passes all the compared approaches in CIFAR10 and CI-
FAR100 under 0% and 100% mismatch proportions. This
shows the robustness of WAD. ii) WAD has a tiny improve-
ment over the baseline under a 100% mismatch proportion
on CIFAR10 and CIFAR100. The reason may be that WAD
achieves tiny benefits from some instances with unknown
categories similar to targets. iii) The accuracies of some
approaches, such as DS3L and CCSSL, are lower than the
baseline on CIFAR10 with 0% mismatch proportion, as well
as cross-dataset. The reason is that the pseudo-labels in
those approaches heavily rely on the performance of the tar-
get classifier, which is trained on limited labeled instances.
And the poor classifier easily leads to incorrect labeling.
iv) As shown in Table 4, T2T outperforms WAD under the
0% mismatch proportion, but this may be attributed to the
pretraining task, as T2T w\o pre. is lower than WAD. v)
Although WAD’s performance is worse than the baseline
under the 100% mismatch proportion on the cross-dataset,
WAD still surpasses all compared approaches. These results
further demonstrate the robustness of WAD.

4.3. Further Analysis of DS3L

In this subsection, we provide more analysis for the per-
formance degradation of DS3L.

There may be two factors that result in that. i) The DS3L
weighting the instances according to the consistent empir-
ical loss, i.e., it assumes the two views of instances with
unknown categories have inconsistent predictions. Suppos-
ing that the two views of an unlabeled instance are predicted
to be in the same category, it is called consistent prediction.
Then, to verify it, on CIFAR10 with 60% mismatch propor-
tion, we visualize the number of instances with unknown
categories, which have a consistent prediction of two views,
as shown in Figure 1. The dotted line indicates the num-
ber of instances with unknown categories in unlabeled data.
From Figure 1, we observe that the two views of most in-
stances with unknown categories tend to have a consistent
prediction, which is opposite to the assumption in DS3L
and thus result in the invasion of many instances with un-
known categories in training. This may be the main reason
for the performance degradation. ii) The consistent loss and
weight heavily rely on the performance of the target clas-
sifier and a meta-net. Once some unlabeled instances bias
the target classifier trained on limited labeled instances, the
subsequently updated target classifier may be out of control
and thus result in low performance even under 0% mismatch
proportion, as shown in Table 3 & 4.

4.4. The Visualization of Reliable Instances

To verify how many instances selected from unlabeled
data are reliable, on CIFAR10 with 60% mismatch propor-
tion, we visualize the number of unlabeled instances with



Dataset Categories

CIFAR10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
Table 1. Categories of CIFAR10. The target categories are highlighted in bold, while the others are unknown categories.

Dataset Categories

CIFAR100

mammals beaver, dolphin, otter, seal, whale,
aquarium fish, flatfish, ray, shark, trout,
orchids, poppies, roses, sunflowers, tulips,
containers bottles, bowls, cans, cups, plates,
apples, mushrooms, oranges, pears, sweet peppers,
clock, computer keyboard, lamp, telephone, television,
furniture bed, chair, couch, table, wardrobe,
bee, beetle, butterfly, caterpillar, cockroach,
bear, leopard, lion, tiger, wolf,
bridge, castle, house, road, skyscraper,
cloud, forest, mountain, plain, sea,
camel, cattle, chimpanzee, elephant, kangaroo,
fox, porcupine, possum, raccoon, skunk,
crab, lobster, snail, spider, worm,
baby, boy, girl, man, woman,
crocodile, dinosaur, lizard, snake, turtle,
hamster, mouse, rabbit, shrew, squirrel,
maple, oak, palm, pine, willow,
bicycle, bus, motorcycle, pickup truck, train,
lawn-mower, rocket, streetcar, tank, tractor

Table 2. Categories of CIFAR100. The target categories are highlighted in bold, while the others are unknown categories.

CIFAR10 CIFAR100
Method 0% 100% 0% 100%
Baseline 94.33±0.45 94.33±0.45 36.98±1.79 36.98±1.79
DS3L 92.08±0.89 90.82 ±2.50 24.57±4.26 23.15 ±4.67
UASD 95.17±0.41 94.95±0.25 41.62±0.60 39.28±0.95
CCSSL 86.82±0.28 80.47±1.25 42.77±0.78 37.02±1.31
T2T - - 43.13±0.42 32.20±1.86
T2Tw\o pre. - - 44.10±0.93 37.40±6.17
ORCA 95.03±0.91 94.37±0.78 31.93±2.30 31.82±0.83
ORCA w\o pre. 94.62±0.76 93.62±0.38 24.58±0.45 23.40±2.81
WAD 97.97±0.77 95.30±0.78 51.87±0.72 39.35±0.71

Table 3. Experimental results on CIFAR10 and CIFAR100 under
0% and 100% mismatch proportions.

target categories in the selected top α% instances. The re-
sult is shown in Figure 2. The tiny gap between the solid
and dotted lines demonstrates the high reliability of the se-
lected instances.

4.5. Experiments on Tiny-Imagenet

In this subsection, we compare WAD with more meth-
ods, such as OpenLDN [13], OpenMatch [14], Open-
Cos [11], and CSI [17], on Tiny-Imagenet [7], which we see
20 categories as the target and 180 as unknown. The results
are presented in Table 5. As the CSI method is designed
for representation learning in OOD detection, we combine it

Cross-dataset
Method 0% 100%
Baseline 66.83±1.37 66.83±1.37
DS3L 47.79±6.04 51.02±3.99
UASD 60.02±1.08 58.20±0.80
CCSSL 65.12±0.30 60.13±0.62
T2T 69.02±0.34 59.76±2.70
T2T w\o pre. 67.49±0.82 59.19±0.85
ORCA 65.50±1.06 62.25±0.27
ORCA w\o pre. 63.59±1.05 60.03±1.24
WAD 67.97±0.57 63.25±1.40

Table 4. Experimental results on cross-dataset under 0% and 100%
mismatch proportions.

with vanilla pseudo-labeling [8] for semi-supervised tasks.
From Table 5, we have three findings. i) WAD consis-

tently outperforms the baseline across various mismatch
proportions, demonstrating its effectiveness in open-world
datasets. ii) WAD exhibits superior performance at
0%, 20%, and 40% mismatch proportions and performs
competitively with OpenMatch at 60% and 80%. This
difference arises from the distinct weighting techniques.
WAD considers pseudo-labeling and soft weighting equally
important, while OpenMatch prioritizes filtering instances
with unknown categories by hard weighting, i.e., w = 0
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Figure 1. The number of unlabeled instances with consistent pre-
dictions in unknown categories.
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Figure 2. The visualization of the selected reliable instances.

or 1. Thus, OpenMatch, by hard weighting, may filter
some instances with target categories under low mismatch
proportions, while WAD may be affected by instances with
unknown categories under high mismatch proportions due
to soft weighting. iii) Some methods show performance
decline below the baseline under 20% to 80% mismatch
proportions. This may be attributed to two factors. First,
the invasion error is responsible. It is observed that UASD
performs better than the baseline at 0% mismatch propor-
tion but declines at non-zero mismatch proportion due to
the invasion of instances with unknown categories. Second,
the pseudo-labeling error contributes to the decline. We
observe that the methods, such as ”CSI + vanilla pseudo-
labeling,” DS3L, CCSSL, and ORCA, perform lower than
the baseline, even at 0% mismatch proportion. Thus, to
enhance the target classifier, it is crucial to address both the
pseudo-labeling error and the invasion error simultaneously
under class distribution mismatch.

Method 0% 20% 40% 60% 80%
Baseline 31.85±0.92 31.85±0.92 31.85±0.92 31.85±0.92 31.85±0.92
OpenLDN 34.20±0.56 33.70±0.71 33.35±0.78 32.85±0.21 32.95±0.21
OpenMatch 41.45±0.21 41.15±0.49 42.95±1.20 41.00±0.28 39.55±1.20
OpenCoS 40.65±1.06 40.45±0.35 40.55±2.62 39.85±0.78 37.15±1.61
CSI + vanilla
pseudo-labeling 22.40±1.56 22.10±0.42 22.25±0.49 21.80±0.14 20.90±1.13

DS3L 26.00±0.14 24.59±0.28 24.34±0.49 26.06±0.50 24.89±1.85
UASD 34.99±1.29 30.83±0.41 30.84±0.63 25.11±0.08 25.88±2.37
CCSSL 25.75±0.92 26.50±0.57 26.65±0.64 26.10±0.14 26.50±0.23
ORCA 26.50±1.27 25.25±1.34 26.85±2.05 27.20±0.42 27.70±0.21
T2T 33.10±1.56 33.95±0.07 33.60±1.13 34.55±0.07 34.70±0.28
WAD 43.05±1.06 41.25±0.35 43.15±2.62 39.90±0.28 37.85±0.21

Table 5. Experimental results on Tiny-ImageNet. With 0% mismatch pro-
portion, there are 9200 instances from target categories in the unlabeled data. At 20% mismatch proportion,
the number of instances from target categories remains the same, but there are additional 2300 instances from
unknown categories.

5. Proof of WAD’s SSL error
5.1. The Propertity of Lipschitz Continuity

First, we will state that the convolutional neural net-
work(CNN) is λl − Lipschitz continuous. Then, the fol-
lowing definition [15] of Lipschitz continuous with high
dimensional instance x is given.

Definition 1 A function f : Rn → Rm is called
Lipschitz continuous if there exists a constant L such that

∀x, y ∈ Rn, ||f(x)− f(y)||2 ≤ L||x− y||2.

The smallest L for which the previous inequality is true
called the Lipschitz constant of f and will be denoted
L(f).

Then we can conclude the following two Lemmas.

Lemma 1 The Softmax function is λs − Lipschitz
continuous.

Proof 1 We can minimize the Frobenius norm of the Jaco-
bian matrix to solve the Lipschitz constant of the Softmax
function. The softmax function is

fi(x) =
exp(xi)∑K
j=1 exp(xj)

≜ fi i = 1, 2, ...,K.

Its Jacobian matrix is

J =


f1(1− f1) −f1f2 ... −f1fK
−f2f1 f2(1− f2) ... −f2fK
... ... ... ...

−fKf1 −fKf2 ... −fK(1− fK)

.
And the Frobenius norm will be

||J ||F =

√√√√2

K∑
i=1

K∑
j>i

f2
i f

2
j +

K∑
i=1

f2
i (1− fi)2.

Then, we use the Lagrange multiplier method to solve the
optimal solution for ||J ||F . Note the constraints are f1 +



f2+ ...+fK = 1 in our work. Therefore, we can obtain the
unconstrained function as,

F (x) =

√√√√2

K∑
i=1

K∑
j>i

f2
i f

2
j +

K∑
i=1

f2
i (1− fi)2

+ λ(1− f1 − f2 − ...− fK),

where λ is a Lagrange multiplier. Furtherly, we can obtain
several equalities as follows.

K∑
j ̸=i

fif
2
j + 2fi(1− fi)(1− 2fi) = 0, ∀i = 1, 2, ...,K

f1 + f2 + ...+ fK = 1

The solution is fi = 1
K ,∀i = 1, 2, ...,K. Hence, we get

Lipschitz constant L(f) =
√
K−1
K ≜ λs.

Lemma 2 The fully-connected layer is λc −
Lipschitz continuous.

Proof 2 Assume that two inputs xi, xj ∈ Rn, and their
output at one fully-connected layer is yi, yj ∈ Rn. The
function f : Rn → Rn can be defined as f(x) = y =
Wx. Similar to the above proof, we get the λc = τ if
||W||F ≤ τ . Considering that the max pooling layer and
Convolutional layer are special fully-connected layers, both
are λc − Lipschitz continuous.

Lemma 3 ReLU is 1− Lipschitz continuous.

Proof 3 ReLU(·) is defined as max(0, ·), and we have

||ReLU(xi)−ReLU(xj)||2
= ||max(0, xi)−max(0, xj)||2
≤ ||xi − xj ||2.

Thus, ReLU is 1− Lipschitz continuous.
Combing Lemma1&2&3, we can state that CNN is λl −
Lipschitz continuous.

Lemma 4 If one Convolutional Neural Networks con-
sists of nc Convolutional layers, np max pooling lay-
ers, nr ReLU and a softmax function, the CNN is λl −
Lipschitz continuous, where λl = λs{λc}(nc+np).

Proof 4 We define the function of dth layer as hd(x) =
Wdx, so the CNN will be

CNN(x) = Wnc+np+nr+1 · · ·W2W1x.

Then, we obtain,

||CNN(xi)− CNN(xj)||2
≤ λs{λc}(nc+np)||xi − xj ||2
≜ λl||xi − xj ||2.

Thus, the CNNs are λl − Lipschitz continuous.
Because the loss function can be rewritten as,

|ℓ(hθ(xi), yi)− ℓ(hθ(xj), yj)|
=

∣∣||CNN(xi)− yi||2 − ||CNN(xj)− yj ||2
∣∣

≤ ||CNN(xi)− CNN(xj)||2
≤ λℓ||xi − xj ||2.

where hθ is the target model with the current parameter θ.
Hence, we proof that the loss function is also λl −
Lipschitza continuous. In the theoretical study, we use
the l2 loss instead of the widely applied cross-entropy loss
for the classification problem following [16].

5.2. The Proof of SSL Error

The population risk of the target classifier learned from
both labeled and unlabeled datasets in the SSL setting, as
shown in Eq.7, is controlled by the training error, general-
ization gap, and SSL error. The generalization gap is the
gap between the population risk and the average predic-
tion loss across all instances in T . Note that T contains
all the accessible instances with target categories, including
labeled and unlabeled. And every instance in T is assumed
with ground truth labels in ideal. The training error is the
average empirical loss across the labeled dataset and unla-
beled one with pseudo labels (T̂ ). It has been empirically
observed that the training error can be reduced to almost
zero in DNNs, and the generalization gap of DNNs can be
bounded [16]. The SSL error is the gap between the aver-
age empirical loss across the instances with target categories
and both the labeled dataset and unlabeled one with pseudo
labels (T̂ ).

E(x,y)∼D[l(x, y;hT̂ )]

≤
∣∣∣∣E(x,y)∼D[l(x, y;hT̂ )]−

1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
generalization gap

+

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈T̂

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
training error

+

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
SSL error

,

(7)
where T̂ = {(xi,l, yi,l)}mi=1∪{(xi,u, ŷi,u}ni=1, D is the data
distribution of the instances that belong to target categories
in the realistic world, i.e., D = X × Y . l(·, ·;hT̂ ) : X ×
Y → R denotes the loss function of the target classifier hT̂

learned from T̂ .



Thus, in the SSL setting, the essential component con-
cerning population risk is the SSL error, which indicates
the effectiveness of the target classifier learned from labeled
data and unlabeled ones with pseudo labels. The SSL error
can be minimized by improving the quality of pseudo la-
bels when the labeled and unlabeled instances come from
identical categories. However, under class distribution mis-
match, the unlabeled data usually contains unknown cate-
gories, which invade the training of the target classifier as
outliers and cause catastrophic errors for the target classi-
fier. To circumvent this problem, we further deconstruct the
SSL error as pseudo-labeling and invasion error, as shown
in Eq.8.

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂

l(x, y;hT̂ )

∣∣∣∣
=

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )

− 1

|T̂ |

 ∑
(x,y)∈T̂\U

l(x, y;hT̂ ) +
∑

(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣
=

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

− 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣
≤

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
Pseudo−labeling error

+

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣︸ ︷︷ ︸
Invasion error

(8)

5.2.1 The Bound for Pseudo-labeling Error

Minimizing the pseudo-labeling error is equivalent to im-
proving the quality of the pseudo-labels. In the following,
we verify that the quality of pseudo labels does bound the
pseudo-labeling error.

In our work, we determine the pseudo label according to
the maximum PMI. The pseudo label is defined as Eq.9.

ŷi,u = argmax
k

ξk (9)

wherein

ξ = maxξk, ξk = cos < zi,u, zj,l,k >

where |zi,u = 1| = |zj,l,k| = 1, k ∈ Y , and Y =
1, 2, ...,K. zi,u and zj,l,k represents the representations of
the unlabeled instance xi,u and labeled ones xj,l,k with cat-
egories k respectively. ξ indicates the similarity between
the unlabeled representation and its nearest labeled one and
it is proportional to the PMI, that decides the pseudo label.

Moreover, weight is assigned to each unlabeled instance
to prevent the ones with unknown categories from training.
The weight is defined as,

wi,u = g1 (p̃i,u)× g2

(
1− q̃i,u

p̃i,u

)
(10)

wherein
p̃i,u = max

j
f(zi,u, zj,l,k)

q̃i,u = max
v,k ̸=ŷi,u

f(zi,u, zv,l,k)

where g1(·) and g2(·) can be interpreted as any monoton-
ically increasing functions. The functions g1(·) and g2(·),
which we adopt here, are identical mappings.
Then, we calculate the Euclidean distance between zi,u and
its nearest labeled one (zj,st), denoted as Di,u.

Di,u =
√

|zi,u|+ |zj,st| − 2|zi,u||zj,st|cos < zi,u, zj,st >

=
√

2− 2cos < zi,u, zj,st >

=
√

2− 2ξ(ξ ≤ 1, ∀xi,u ∈ T\U)
(11)

Assume that there exists z′j around zi,u, and z′j has 0 loss.
We denote that the population distribution of zi,u is τ(zi),
and the empirical distribution of zi,u is τk(zi). Then,
we start our proof with bounding Eyi∼τ(zi)[l(xi, yi;hT̂ )],
which is the prediction error’s expectation of the instance
xi,u.

Eyi∼τ(zi)[l(xi, yi;hT̂ )]

=
∑
k∈Y

pyi∼τk(zi)(yi = k)l(xi, yi;hT̂ )

=
∑
k∈Y

pyi∼τk(zi)(yi = k)wi,uℓ(hT̂ (xi), yi)

≤
∑
k∈Y

pyi∼τk(z′
j,st)

(yi = k)wi,uℓ(hT̂ (xi), yi)

+
∑
k∈Y

|τk(zi)− τk(z
′
j,st)|wi,uℓ(hT̂ (xi), yi)

≤
wi,u≤2

2

[∑
k∈Y

pyi∼τk(z′
j,st)

(yi = k)ℓ(hT̂ (xi), yi)

+
∑
k∈Y

|τk(zi)− τk(z
′
j,st)|ℓ(hT̂ (xi), yi)

]

(12)

where l(xi, yi;hT̂ ) = wi,uℓ(hT̂ (xi), yi) is the loss function
for training the target classifier hT̂ in our work and wi,u ≤



2. ℓ(·, ·) denotes the cross-entropy loss. Note that we use
the l2 loss instead of the widely applied cross-entropy loss
in the theoretical study.

For
∑

k∈Y |τk(zi)− τk(z
′
j,st)|ℓ((hT̂ (xi), yi), we obtain

∑
k∈Y

|τk(zi)− τk(z
′
j,st)|ℓ((hT̂ (xi), yi)

=
∑
k∈Y

Di,u · ℓ(hT̂ (xi), yi)

≤
√
2− 2ξ · λµH

2
K

≤
√
2− 2ξ · λµHK

(13)

where H/2 is the upper bound of ℓ(·, ·) and then l(x, y;hT̂ )
is bounded by H due to wi,u ≤ 2.
For

∑
k∈Y pyi∼τk(z′

j,st)
(yi = k)ℓ((hT̂ (xi), yi), we have

∑
k∈Y

pyi∼τk(z′
j,st)

(yi = k)ℓ((hT̂ (xi), yi)

=
∑
k∈Y

pyi∼τk(z′
j,st)

(yi = k){ℓ((hT̂ (xi), yi)− ℓ(hT̂ (xj,st), yj,st)}

+
∑
k∈Y

pyi∼τk(z′
j,st)

(yi = k)ℓ(hT̂ (xj,st), yj,st)

≤ λl
√

2− 2ξ.
(14)

Hence, Eyi∼τ(zi)[l(xi, yi;hT̂ )] ≤
√
4− 4ξ · (λµHK+λl).

Furthermore, according to the Hoeffding inequality [5], we
can obtain

P
{∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )− Ey∼τ(x)

[
l(x, y;hT̂ )

]∣∣ ≥ t

}

≤ exp

 −2|T |2t2
|T |∑
i=1

(max [wi,uℓ(hT̂ (x), y)]−min [wi,uℓ(hT̂ (x), y)])
2


≤ exp(

−2|T |t2

H2
)

≤ exp(
−|T |t2

2H2
).

(15)

Let exp(−|T |t2
2H2 ) = γ. With probability 1− γ, we have∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

∣∣∣∣
≤

√
4− 4ξ(λl + λµHK) +

√
2H2log(1/γ)

|T |
.

5.2.2 The Bound for Invation Error

The unlabeled instances with unknown categories will hurt
the target classifier because they invade the training of the
classifier as outliers. Hence, weights are exploited to mea-
sure the role of instances in the WAD framework. In the
following, we verify that the weights of unlabeled instances
with unknown categories can bound the invasion error. The
definition of the weight is shown in the subsubsection 5.2.1.

Then, we can obtain the Eq.16.

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣
=

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

wi,uℓ(hT̂ (x), y)

∣∣∣∣
≤ H

2|T̂ |

∑
(x,y)∈U

wi,u

≤ H|U |
2|T̂ |

1

|U |
∑

(x,y)∈U

wi,u

≤ w|U |H
2|T̂ |

≤ w|U |H
|T̂ |

.

(16)

where w indicates the mean value with respect to wi,u of
the unlabeled instances with unknown categories.

5.2.3 The Bound of WAD’s SSL error

For pseudo-labeling error, with probability 1− γ, we have

∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

∣∣∣∣
≤

√
4− 4ξ(λl + λµHK) +

√
2H2log(1/γ)

|T |
.

For invasion error, we have

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣ ≤ w|U |H
|T̂ |

.

Therefore, for SSL error of WAD under class distribution



mismatch, with probability 1− γ, we can obtain that∣∣∣∣ 1

|T |
∑

(x,y)∈T

l(x, y;hT̂ )−
1

|T̂ |

∑
(x,y)∈T̂\U

l(x, y;hT̂ )

∣∣∣∣
+

∣∣∣∣ 1

|T̂ |

∑
(x,y)∈U

l(x, y;hT̂ )

∣∣∣∣
≤

√
4− 4ξ(λl + λµHK) +

w|U |H
|T̂ |

+

√
2H2log(1/γ)

|T |
.

(17)
As shown in Eq.17, the SSL error is jointly controlled by

the ξ, which is proportional to the PMI and determines the
pseudo labels, and w, which is the average of the weights
of the instances with unknown categories. In WAD, we as-
sign the class label of the labeled instances with the maxi-
mum PMI to the unlabeled one to maximize the ξ, and si-
multaneously we decrease the weight of each instance with
unknown categories to minimize the w, following that the
SSL error is mitigated. Therefore, WAD’s SSL error has a
tight upper bound.
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