
σ-Adaptive Decoupled Prototype for Few-Shot Object Detection (Supplementary Material)

In the supplementary material, we present additional de-
tails which are not included in the main paper due to space
limitations, to provide further insights into our method.

Specifically, we include:

• Theoretical proof (§A and §B).

• Effect of η on SigmE Power Normalization (§C).

• Implementation details of K=1 (§D).

• Pipelines of per-class prototype vs. per-sample proto-
type (§E).

• Applying σ-ADP to transformer-based FCT (§F)

• Visualization results (attention maps) of the entangled
vs. disentangled prototypes, and detection boxes of σ-
ADP (§G).

A. Approximating the optimal prototype is
equivalent to minimizing the variance

For meta-learning-based detectors, the prototypes of L
classes ( Φ̄L ≡ {Φ̄l}l∈IL

) should have the maximum sim-
ilarity to K support samples (Φk), per class. This is in-
dicated by the maximum expectation of cosine similarity
within the same class and across L classes, as follows:
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Demonstrated by [31] (Refer to Propositional 5.), the expec-
tation of ratio is a closed-form approximation to the ratio of
expectation in computer vision application, then:
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According to the relation of expectation and variance, we
have:
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The vectors ϕk and ϕ̄l are both C-dimensional, and we
assume each dimension of a vector is independent.
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Figure 5: Effect of η on SigmE Power Normalization for filter-
ing out the large dispersion features (5a), and adjusting the angle
similarity via an element-wise addition (5b). The black dotted line
represents the angle similarity (cosine distribution) without any
adaption.
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Finally, we integrate the above formulations and obtain:
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B. ‘Refine once’ and ‘Refine twice’ perform
similarly

We define the prototype generated by the ‘Refine once’
strategy as p1+2 and that generated by the ‘Refine twice’
strategy as p2 (p1 is the first refined prototype). The Φ̄
represents the class-level representation which is K-average
pooled over K support features Φk. Formulations are de-
fined as follows:

p1 = Cos(Φk, Φ̄) ·Φk

p2 = D(Φk, p1)
−1 ·Φk

p1+2 = (Cos(Φk, Φ̄) + D(Φk, Φ̄)−1) ·Φk

Here, p1+2 and p2 are normalized prototypes, and the ratio
of the their expectations is:
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We define (Φk − Φ̄)2 = x, where x ∈ [0, 4]. We can then
derive it as follows:
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Together with above formulas, we obtain:
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Usually C is large enough (C = 1024 > 103) so that p1+2

is close to p2. As a result, ‘Refine once’ performs similar to
‘Refine twice’.

C. The effect of η on SigmE Power Normaliza-
tion

Features obtained by adapting a single similarity metric
are inherently limited in their ability to capture all the in-
trinsic characteristics within a given class. This is due to
the fact that a single metric can only be discriminative in
one feature space, and therefore may not generalize well
to other feature spaces. This can result in similarity bias,
which significantly lowers the generalization ability of the
detector, particularly when training data is limited. To ad-
dress this issue, it is important to consider multiple simi-
larity metrics. By doing so, the detector can map samples
more compactly into a smaller feature space, resulting in
more discriminative features that can improve the detector’s
overall performance.

We consider both angle distance (cosine similarity) and
magnitude distance, measured by the spread of data points
around the mean using the metric σ. This σ metric captures
the frequency of feature occurrence and filters out rare co-
occurring features, highlighting common areas where they
do appear. To eliminate nuisance variability in visual fea-
tures caused by intra-class variations such as scale, pose,
and texture, we use Power Normalization (PN). This allows
us to up-weight features that deviate less from the mean,
with a hyperparameter η controlling the sharpness of the
output distribution.

Figure 5a shows that increasing η results in a nar-
rower/concentrated distribution, which helps to avoid the
prototype representations from being affected by trivial
variations. The adaptation effect can be seen in Figure 5b,
where a larger value of η yields greater emphasis on de-
scriptors with a large angle similarity. By re-evaluating the
support features according to σ-adaptive similarity, the de-
tector is able to prioritize the intrinsic representations that
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Figure 6: Per-class prototype (a) and per-sample prototype (b) ex-
plained.

have both high angle and magnitude similarity with support
features during prototype learning.

D. Implementation details of K=1

When K=1, the σ-ADP performs self-refinement on the
sample itself. For example, for the spatial-based relation
maps, the mean point Φ̄ of Φk∈RN×1×C has the shape of
1×1×C. When computed with Φk in Eq. 1 and Eq. 2, the
resulting output has the size of N×1×1. Subsequently, in Eq.
5, Φk undergoes spatial re-weighting, resulting in a size of
N×1×C output.

E. Per-class and Per-sample Prototype-based
Pipelines

Few-shot object detection involves two learning regimes:
1) a single prototype per category, and 2) an individual
prototype per support sample (following strategies used in
methods [24, 55]). In the first regime, a set of support
features extracted from encoding network (EN) are sum-
marized via σ-ADP to create a class-level prototype. This
prototype is then cross-correlated against the query feature
(extracted from EN) in the branch of Support-Query Aggre-
gation to obtain a single correlated query feature, which is
fed into RPN and the followed detection head. In the sec-
ond setting, each support sample is treated as an individual
prototype and aggregated separately with the query feature.
The resulting set of correlated query features is averaged
(channel-wisely concatenated, then decreased by the stack
of FC layers) and passed to RPN. Figure 6 (a) and (b) illus-
trate the two pipelines. Comparison results for the 5-shot
protocol on the FSOD testset for novel classes are shown
below, which demonstrates that 1) neither class-level proto-



type nor support-query interactions benefit from intra-class
variations, and 2) a robust class-level prototype boots the
FSOD performance over per-sample prototype.

Prototype Novel(5-shot)
mAP AP50 AP75

Per-sample 26.7 29.7 24.7
Per-class 29.9 32.7 27.3

F. Applying σ-ADP to transformer-based FCT
We use FCT [16] as the baseline and incorporate σ-

ADP after stage3 of the backbone network. We decou-
ple the output of the support branch in stage3 to com-
pute task-specific and σ-adaptive prototypes. These proto-
types serve for the proposal generator and stage4&Pairwise
matching, respectively. The results presented below
are for split1, novel classes on PASCAL VOC dataset.

Method Venue 1-shot 2-shot 3-shot 5-shot 10-shot
FCT CVPR 2022 49.9 57.1 57.9 63.2 67.1

Ours+FCT 51.7 59.0 60.6 65.5 69.8

G. Visualization
G.1. Qualitative Results of Attention Maps

Visualizing the attention maps on the support images is
an effective way to help understand how decoupled task-
specific prototypes benefit the few-shot object detection
(FSOD) task. In Figure 7, we show three types of attention
maps. The first type, denoted by Φ̄′, represents an entan-
gled task-agnostic prototype that correlates with each sup-
port image. However, this prototype needs to balance the
mismatched goals of both RPN and DH tasks, leading to
activations in inaccurate regions and suboptimal solutions.
The second type of attention maps, labeled as Φ̄‡, corre-
spond to spatial-wise prototypes that address the task of
‘where to look’ in RPN. The third type, marked as Φ̄†, rep-
resents channel-wise prototypes used for the ‘what to look
for’ task in the Detection Head (DH). Decoupling these pro-
totypes allows them to focus on individual tasks by attend-
ing to spatial patterns and semantic clues separately, which
provides more precise information for the query images.
These results demonstrate that decoupling task-specific pro-
totypes can improve the FSOD performance by providing
task-specific attention maps, and that entangled prototypes
are not as effective due to their need to balance the mis-
matched goals of multiple tasks.

G.2. Results of Detected Boxes

We visualize the detection results achieved by the pro-
posed σ-ADP in Figure 8. It is evident that the model can
accurately detect objects belonging to the novel categories,
without the need for fine-tuning.
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Figure 7: Attention maps on support images w.r.t. the entangled task-agnostic prototype (Φ̄′) and decoupled task-specific prototypes,
spatial-wise Φ̄‡ for the ‘where to look’ task and channel-wise Φ̄† for the ‘what to look for’ task. Refer to §G.1 for detailed descriptions.
Zoom in to view the details.
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Figure 8: Detection results of σ-ADP for novel categories in the query images on the FSOD testset (Note we do not use meta fine-tuning).
The green boxes indicate the detected objects and the corresponding categories are displayed as text.


