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A. Appendix
A.1. Comparison Between Diffeomorphic Methods

and Inverse Consistent Methods

Figure A1. Illustration of two different types of methods. Tech-
nically, diffeomorphic methods [1, 4, 8, 5, 10, 9, 6, 7] are also
inverse-consistent. But following the convention in [11, 2, 3], we
restrict inverse consistency in the essence of operating on two dif-
ferent mappings predicted by the same model. Since the diffeo-
morphic methods only operate on one mapping, where the other
mapping is calculated from that mapping, rather than predicted.
Thus, they are called diffeomorphic methods instead.

A.2. Proof of Thm. 1

Theorem 1 (Relaxed ideal symmetric registration via
cross-sanity check). An ideal symmetric registration meets

φa→b ◦ φb→a = id,

in which id denotes the identity transformation. Then, a
cross-sanity checked registration is a relaxed solution to the
ideal registration, satisfying

||ga→b + g̃b→a||22 <
β(2− α)N

1− α
.

Proof. A straightforward explanation for ideal symmetric
registration φa→b ◦ φb→a = id would be that the coordi-
nates of one pixel (p) for image a stay the same after two
transformations: forward transformation (from a to b) and
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backward transformation (from b back to a). Therefore, we
have the chain of the coordinates changing

p

a→b
===⇒ ga→b(p) + p

b→a
===⇒ gb→a(ga→b(p) + p) + ga→b + p

= p. (A1)

By simplification, we have the ideal inverse consistency:

gb→a(ga→b(p) + p)︸ ︷︷ ︸+ ga→b + p = p

g̃b→a + ga→b = 0. (A2)

Different from the ideal inverse consistency, recall that our
cross-sanity check in norm form is

||ga→b + g̃b→a||22 < α(||ga→b||22+||g̃b→a||22)+βN. (A3)

Suppose 0 < α < 1 and β > 0. By expanding the cross-
sanity check, we have

ga→b⊤g̃b→a <
βN − (1− α)(||ga→b||22 + ||g̃b→a||22)

2

≤ βN

2
.

(A4)
So, we have

0 ≤ ga→b⊤g̃b→a <
βN

2
, (A5)

and
0 < ||ga→b||22 + ||g̃b→a||22 <

βN

1− α
. (A6)

Thus, we have

||ga→b + g̃b→a||22 = ||ga→b||22 + ||g̃b→a||22 + 2ga→b⊤g̃b→a

<
β(2− α)N

1− α
.

(A7)



Finally, we derive the lower/upper bound as

||ga→b + g̃b→a||22 <
β(2− α)N

1− α
. (A8)

It is obvious that our cross-sanity check formulation
(Eq. (A8)) is a relaxed version of the strict symmetry in
Eq. (A2). So far, we prove that under our cross-sanity
check, the symmetry of g̃b→a and ga→b is bounded by α and
β. When the strict symmetry is satisfied, our cross-sanity
check is definitely satisfied. However, if our cross-sanity
check is satisfied, it is not the other way around. We show
in the experiments that our relaxed version of symmetry im-
proves the overall results, quantitatively and qualitatively.

A.3. Proof of Thm. 2

Theorem 2 (Existence of the unique minimizer for our re-
laxed optimization). Let m and f be two images defined
on the same spatial domain Ω, which is connected, closed,
and bounded in Rn with a Lipschitz boundary ∂Ω. Let
g : H × H → H⋆ be a displacement mapping from the
Hilbert space H to its dual space H⋆. Then, there exists a
unique minimizer g⋆ to the relaxed minimization problem.

Proof. In reality, a meaningful deformation field cannot be
unbounded. We first restrict g to be a closed subset of
L2(H⋆):

B ≜{g ∈ L2(H⋆) :

||g||2L2(H⋆) ≤ B,B ∈ R+ only depends on Ω}. (A9)

We then seek solutions g⋆ to the minimization problem in
the space H1(Ω) ∩ B, and meanwhile satisfying our pro-
posed checks. For short notations, we denote the minimiza-
tion problem as

min
g∈H1∩B

E(g),

s.t.

E(g) = −Sim(f,m ◦ (gm→f + id)) + λr||Reg(gm→f )||22,
(A10)

and λr is a positive constant. For g ∈ H1 ∩ B, E(g)
is bounded below and there exists a minimizing sequence
{gk}∞k=1 satisfying

E(gk+1) ≤ E(gk) ≤ · · · ≤ E(g1) ≤ lim
k→∞

E(gk)

= inf
H1∩B

E(g). (A11)

For identical inputs, we have ||g||22 = 0 < B ⇒ g ∈ H1 ∩
B, thus, the self-sanity is checked. For different image pairs,
we have

||g + g̃||22 < α(||g||22 + ||g̃||22) + βN ≤ 2αB + βN.
(A12)

By definition, g and its reversed displacement g̃ need to fol-
low the constraint g(x)g̃(x) ≤ 0,∀x ∈ Ω, so we have

max(||g + g̃||22) < ||g||22 ≤ B ⇒ 2αB+βN < B. (A13)

Here, we let 2αB + βN < B, since our cross-sanity check
is considered a tighter bound than B. Thus, by choosing
appropriate α and β, we can ensure that the cross-sanity is
also checked, such that g ∈ H1 ∩ B. Due to the fact that
H1 is precompact in L2 space, there exists a convergent
subsequence where we still denote as {gk}∞k=1, and g⋆ ∈
H1, such that gk → g⋆, which is strongly in L2 and a.e.
in Ω. Note that, either similarity functions (e.g. NCC) or
distance functions (e.g. SSD) is naturally bounded in our
image registration scenario, so that we can always have

−Sim(f,m ◦ (g⋆ + p)) ≤ lim
k→∞

−Sim(f,m ◦ (gk + p)).

(A14)
Besides, for the H1 regularization, since {gk}∞k=1 is a
bounded convergent sequence in H1 ∩ B, and gk → g⋆

a.e. in Ω. By the dominant convergence theorem, we have

lim
k→∞

Reg(gk) = Reg(g⋆). (A15)

Combining Eq. (A14) with Eq. (A15), we obtain

E(g⋆) ≤ lim
k→∞

E(gk) = inf
H1∩B

E(g). (A16)

Thus, g⋆ is indeed a solution to the minimization problem.
So far, we prove that there exists a minimizer g⋆ of the mod-
ified optimization problem. We can then prove that g⋆ is
unique. Note that, we assume that the similarity operator is
concave (e.g., NCC, negative NCC is convex) when it is not
a distance operator (e.g., SSD is convex) on the transforma-
tion with a pair of (m, f). I.e., g⋆ = g|m, f , i.e., g⋆ learned
by the model and conditioned on this specific (m, f) pair
to satisfy the proposed sanity checks. Therefore, since the
data term (e.g. SSD) and the regularization (H1 regulariza-
tion) are convex, together with the convex search space for
g, the uniqueness of the minimizer g⋆ is proved.

A.4. Proof of Thm. 3

Theorem 3 (Loyalty of the sanity-checked minimizer). Let
g∗ be the optimal minimizer to the bidirectional registra-
tion problem, defined in Eq. (10), and gsanity as our sanity-
checked minimizer, defined in Eq. (11). The distance be-
tween these two minimizers can be upper bounded as

Sim(gsanity)− Sim(g∗) ≤
λ

2
||A(gsanity − g∗)||22.

Proof. Since g∗ is optimal, thus we have that −Sim(g∗) +
λ
2 ||Ag∗ − y||22 ≤ −Sim(gsanity) + λ

2 ||Agsanity − y||22.
Since ||Ag∗ − y||22 = 0, with elimination we have that
−Sim(g∗) ≤ − Sim(gsanity) +

λ
2 ||Agsanity − y||22. By



Figure A2. Qualitative comparisons of different model variants
on: (Top) IXI dataset, (Bottom) OASIS validation dataset.

substituting y with Ag∗ and combining like terms, we
have Eq. (12). Therefore, we prove the loyalty of the unique
minimizer gsanity to the optimal minimizer g∗, controlled
by weight λ.

A.5. Proof of CS Error Upper Bound

Recall we want to prove that the CS error is upper
bounded in the form of

||CS(gsanity)||22 < 2(1− α)βN.

Proof. Recall CS error in Eq. (9), and by Thm. 1, we have

||CS(gsanity)||22
= ||gsanity + g̃sanity||22 − α(||gsanity||22 + ||g̃sanity||22)− 2βN

= (1− α)(||gsanity||22 + ||g̃sanity||22

+
2

1− α
gsanity

⊤g̃sanity)− 2βN

≤ (1− α)(||gsanity||22 + ||g̃sanity||22
+ 2gsanity

⊤g̃sanity)− 2βN

= (1− α)||gsanity + g̃sanity||22 − 2βN

< (1− α)
2β(2− α)

1− α
N − 2βN

= 2(1− α)βN, where 0 < α < 1 and β > 0.
(A17)

The first inequality holds since gsanity
⊤g̃sanity ≤ 0 for

valid inverse consistent displacements. The second inequal-
ity holds for two directions (m→f and f→m) by Thm. 1.
Thus, the proof for CS error upper bound is completed.

A.6. Cross-sanity Check Numerical Study

We present our numerical study for α and β parameters
in Tab. A1. This ablation study is conducted on the same
subset of IXI training dataset described in the ablation study
section but validate/test in the entire validation/test set. Our
thought is that compared to the problem of enforcing strict
inverse consistency over two different displacements, the
relaxed version might be easier to solve, mathematically.

α β Dice SDice FV AJ×104 SSE×10-1 CSE
∗0.1 5 0.7263 0.8850 1.5220 3.00 5.156 10.72
†0.1 5 0.7223 0.8745 1.6130 3.30 4.337 11.05

0 0 0.7178 0.9486 1.4041 2.74 0.693 7.58→1.8176.12%

0.1

0.1 0.7199 0.9533 1.2460 2.30 0.721 6.39→2.2165.41%
1 0.7223 0.9654 1.2070 2.02 0.643 6.81→4.6032.45%
3 0.7233 0.9685 1.0160 1.51 0.596 8.70→5.1940.34%
5 0.7247 0.9588 0.8216 1.09 0.723 10.72→5.0353.07%
7 0.7226 0.9689 0.6632 0.77 0.642 12.53→4.5263.92%
8 0.7232 0.9600 0.6152 0.68 0.668 13.39→4.2768.11%
9 0.7226 0.9699 0.5534 0.58 0.572 14.25→4.0371.72%
11 0.7206 0.9665 0.4472 0.41 0.564 15.83→3.5377.70%
12 0.7211 0.9668 0.4219 0.38 0.572 16.55→3.4379.27%
13 0.7186 0.9742 0.4278 0.39 0.543 17.22→3.3980.31%
14 0.7189 0.9678 0.4182 0.37 0.543 17.80→3.2481.80%
16 0.7179 0.9681 0.4345 0.40 0.561 18.79→2.8984.62%
20 0.7124 0.9693 0.4668 0.44 0.577 20.36→2.8286.15%

0.01

5

0.7229 0.9677 0.9842 1.46 0.623 11.30→5.4351.94%
0.10 0.7247 0.9588 0.8216 1.09 0.723 10.72→5.0353.07%
0.15 0.7230 0.9624 0.7891 0.99 0.591 10.42→4.7754.22%
0.20 0.7222 0.9656 0.7479 0.90 0.586 10.15→4.5355.37%
0.50 0.7218 0.9570 0.7276 0.86 0.642 8.64→3.4759.83%
1 0.7165 0.9353 0.9622 1.45 1.277 7.41→1.9373.95%

Table A1. Ablation study for α, β, where the loss weights for
both sanity check losses are set to 0.001. ∗ denotes the checkpoint
model used in this ablation (resulting in initial CSE errors on the
left-side of arrows), and † represents where we follow the standard
protocol to finetune the model for the same epochs as the rest ab-
lative experiments. In this case, α and β are only used to calculate
the CSE. Along with SSE, they are not part of the training loss.

Again, practically speaking, it is rather difficult to find one-
to-one correspondence for every point in the moving-fixed
image pair, which is the strict inverse consistency saying,
relaxing or setting an error threshold can be effective from
this perspective. Our error-bound formulation implicitly
presents guidance for training such sanity-checked models.

Settings of α and β. A uniform estimate of α and β is pos-
sible, however, such a bound is not sharp, and it will lead to
over-estimation of λc (the regularization parameter) for dif-
ferent applications. Hence, we prefer to derive the bounds
on α and β on particular sets of applications, where we can
easily find such bounds from the formulations. As stated in
Thm. 1, α and β control the relaxation. We can also di-
rectly derive an upper bound from the check that constrains
the ratio of two displacements. Since ga→bg̃b→a<0, then
ga→b

g̃b→a+
g̃b→a

ga→b<
2

1−α , β is neglected for simplicity. These two
bounds estimate ranges of α and β for our relaxation. E.g.,
we use existing models (e.g., VM) to predict ten samples
randomly, and set β to 0.15× maximum displacement; set
α to 0.1 for models outputting absolute displacements (e.g.,
VM and TM), or α to 0.01 for models outputting relative
displacements (e.g., DIRAC). Note that this only needs to
be done once, while the previous experiment shows that the
registrations are pretty robust among a range of α and β.
Thus, it is safe to choose α and β within the range.



Train
Test Model Dice SDice HD95 SDlogJ FV AJ×104 SSE×10-1 CSE

IXI
OASIS

VM 0.714 0.848 3.039 0.118 0.831 1.52 6.24 7.49
VM-ESC 0.759 1.000 2.563 0.080 0.173 0.16 0.00 2.86

TMBS 0.775 0.901 2.201 0.072 0.00 0.00 24.4 15.16
TMBS-ESC 0.783 1.000 2.144 0.061 0.00 0.00 0.00 3.73

OASIS
IXI

TM 0.705 0.918 4.083 0.132 1.390 2.67 3.18 13.78
TM-SC 0.718 1.000 3.903 0.097 0.674 0.84 0.01 5.58

Table A2. Generalization ability study on sanity-checked regis-
ters to study cross-dataset registration performance. Here, we set
α=0.1, and β=12 to calculate cross-sanity errors in both settings.

Figure A3. Qualitative comparisons between ICNet [11],
ICON [2] and our method on IXI dataset.

A.7. Ablative Qualitative Comparisons

Qualitative comparisons between our ablative model
variants are shown in Fig. A2.

A.8. Sanity-awareness Preservation Study on
Cross-Dataset Scenario

We test whether sanity awareness is preserved in cross-
dataset scenarios. We train our sanity-checked register in
one dataset and then test it on different dataset so no over-
lapping between training and testing datasets. The results
are shown in Tab. A2. Compared to methods without sanity
checks, our sanity-checked models improve in every met-
ric, certifying that our sanity checks do not harm the model
training. Besides, the sanity-checked registers still preserve
good sanity for preventing corresponding errors.

A.9. Experimental Results Statistical Significance

We specifically study whether our results are statis-
tically significant, compared to the other strong base-
lines, e.g., ICON [2] and DIRAC [3]. We calculate
p value using scipy package. Compared to ICON,
our VM-ESC (p value: 0.0174) and TMBS-ESC (p
value: 0.0280), while for DIRAC, our DIRAC-SC (p
value: 0.0204), considering all metrics shown in the
corresponding tables. All the p values are < 0.05, indi-
cating that our results are statistically significant.

A.10. Error Map Comparisons between Inverse
Consistent Methods

Qualitative comparisons between inverse consistent
methods on IXI dataset are shown in Fig. A3.

Method TRE↓ STRE↓ ROB↑ FV↓ AJ×102↓
DIRAC 2.760±0.247 0.274±0.027 0.776±0.055 0.025±0.009 4.242±2.954

DIRAC-C 2.721±0.262 0.268±0.039 0.791±0.044 0.022±0.008 3.012±1.442
DIRAC-SC 2.719±0.259 0.218±0.046 0.795±0.034 0.022±0.005 3.001±1.314

Table A3. Performance of replacing the inverse consistent error.

A.11. Performance of Replacing DIRAC’s Inverse
Error

We denote it as DIRAC-C, and report in Tab. A3.

A.12. Role of Image Similarity Loss
The image similarity loss still plays a very important role

during training. The reason is that Lself and Lcross are de-
fined on displacements, to calculate such losses, we need
to ensure that those displacements are meaningful, which is
guaranteed via Lsim. Compared to the value of NCC (<1),
the cross-sanity error is relatively large (Tab. 2), and using
small λc will not interfere with the optimizations.
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