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A. Algorithm of PRGLast

Algorithm 2: PRGLast: PRG Using Class Predictions from the Last Epoch

Input: class tracking matrices C = {C(i); i ∈ (1, ..., NB)}, labeled training dataset DL, unlabeled training dataset DU , model θ,
label bank {l(i); i ∈ (1, ..., nT − nL)}

1 for n = 1 to MaxIteration do
2 From DL, draw a mini-batch BL = {(x(b)

L , y
(b)
L ); b ∈ (1, ..., B)}

3 From DU , draw a mini-batch BU = {(x(b)
U ); b ∈ (1, ..., BU )}

4 H = RowWiseNormalize(Average(C)) // Construct transition matrix

5 H ′
ij =

Hij
Lj∑k

d=1
Ld

// Rescale H at class-level

6 for b = 1 to BU do
7 p(b) = fθ(x

(b)
U ) // Compute model prediction

8 idx = Index(x
(b)
U ) // Obtain the index of x

(b)
U in DU

9 p̃(b) = Normalize(H ′
l(idx) ◦ p(b)) // Perform pseudo-rectifying guidance

10 p̂(b) = argmax(p(b)) // Compute class prediction

11 if l(idx) ̸= p̂(b) then
12 C

(n)

l(idx)p̂(b)
= C

(n)

l(idx)p̂(b)
+ 1 // Perform class transition tracking

13 l(idx) = p̂(b)

14 end
15 end

16 LL,LU = FixMatch
(
BL,BU , {p̃(b); b ∈ (1, ..., BU )}

)
// Run an applicable SSL learner

17 θ = SGD(LL + LU , θ) // Update model parameters θ

18 end

B. Discussion on Re-Weighting Scheme of H
In this section, we give insights into re-weighting scheme of H in Eq. (6) based on the following theoretical justification.

Overall, we give an explanation from the perspective of gradient. Our re-weighting scheme potentially scale the gradient
magnitude on the learning of the unlabeled data to mitigate adverse effects of biased labeled data. Letting p be the naive
soft label vector, by Eq. (6), we re-weight H by H ′

ij = × Hij
Lj∑k

d=1
Ld

and obtain the rescaled pseudo-label vector p̃ =

Normalize(H′ ◦ p). Hence, the cross-entropy between prediction p and p̃ can be formalized as

LU = −
k∑
c

p̃ log pc = −
k∑
c

(
H ′

ij × pc

Z

)
log pc

= −
k∑
c

 Hp̂c × pc

Z Lc∑k
d=1 Ld

 log pc, (8)



where Z is the normalize factor. Lc∑k
d=1 Ld

can be regarded as the ratio of pseudo-labels belonging to class c to all labels.

Denoting the logit outputted from the model as o (implying p = Softmax(o)), with no gradient on pseudo-label p̃, we obtain
∂LU

∂oc
= −

∑k
c

p̃c

pc

∂pc

∂oc
, i.e.,

∂LU

∂oc
= −(p̃c − p̃cpc −

k∑
i ̸=c

p̃ipc) (9)

=

1− Hp̂c

Z Lc∑k
d=1 Ld

 pc. (10)

The larger the difference between Hp̂c and Lc∑k
d=1 Ld

, the larger the gradient; and the smaller the difference between Hp̂c and
Lc∑k

d=1 Ld
, the smaller the gradient (∂LU

∂oc
= 0 when Hp̂c

Z Lc∑k
d=1

Ld

= 1). This means that we intend to provide unbiased guidance

(because this is derived from the unlabeled data) for the learning of unlabeled samples from the class level, so as to resist the
influence of biased labeled samples. In addition, the idea behind this re-weighting scheme is that the model should increase
the learning effort for rare classes (the less labels a class is assigned, the smaller the Lc∑k

d=1 Ld
, the larger the gradient) rather

than overlearn popular classes. This will implicitly lead to the model not carrying out too many pseudo-rectifying processes
resulting in more labels transition to classes with too many labels assigned, but trying to assign labels to rare classes.

C. Implementation Details
In this section, we show the complete hyper-parameters in Tab. 7. As mentioned in Sec. 4, our method is implemented as a

plugin to FixMatch [6]. Thus, we keep the original hyper-parameters in FixMatch and alert additional hyper-parameters in
our method. Note that FixMatch sets different values of weight decay w for CIFAR-10 and CIFAR-100, which are 0.0005
and 0.001 respectively. For simplicity, we set w = 0.0005 for all experiments in our work. Additionally, the models in this
paper are trained on GeForce RTX 3090/2080 Ti and Tesla V100. We observe that since no additional network components
are introduced, the average running time of single iteration hardly increased, which means our method does not introduce
excessive computational overhead.

Table 7: Complete list of hyper-parameters of PRG plugged in FixMatch [6]. NB and α are additional hyper-parameters in our
method whereas other hyper-parameters follow the setting of original FixMatch. Note that unlabeled data batch size BU can
be calculated by BU = µB.

Hyper-parameter Description CIFAR-10 CIFAR-100 mini-ImageNet

µ The ratio of unlabeled data to labeled data in a mini-batch 7
B Batch size for labeled data and class transition tracking 64
BU Batch size for unlabeled data 448
λU Unlabeled loss weight 1
τ Confidence threshold 0.95
lr Start learning rate 0.03
β Momentum 0.9
w Weight decay 0.0005
NB Tracked batch number 128
α Class invariance coefficient 1

D. Additional Experimental Results
D.1. Using Distribution Alignment in MNAR

As discussed in Sec. 3.2, distribution alignment (DA) aims to perform strong regularization on pseudo-labels by aligning
the class distribution of predictions on unlabeled data to that of labeled data. DA boosts the performance of SSL models
tangibly [1, 2, 4, 6]. However, DA works on a strong assumption that the distribution of unlabeled data matches that of labeled
data. In MNAR, this assumption does not hold obviously. Therefore, SSL methods that incorporate DA will face predicaments
in MNAR. As shown in Tab. 8, rather than improving performance, integrating DA into SSL models is counterproductive, e.g.,
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Figure 8: Visualization of class tracking matrix C obtained in training process of FixMatch [6] combining PRG. Experiments
are conducted on CIFAR-10 with the same setting as in Fig. 4.

original FixMatch outperforms FixMatch with DA by up to 28.68% on CIFAR-10. Another example is SimMatch in Tab. 1.
Despite SimMatch being a considerably more advanced method compared to FixMatch, its performance with PRG is weaker
than that of FixMatch when a small value of γ is used, implying a small nL. This underperformance can be attributed to its
adoption of DA. As γ (implying nL) increases, more supervisory information allows SimMatch’s inherent strong performance
begins to overshadow the negative impact of DA. Conversely, our method is not restricted by the mismatched distributions and
achieves superior performance across the board, because PRG helps the model to better handle MNAR scenarios without any
prior information (distribution prior estimated from labeled data is used in DA).

Table 8: Accuracy (%) in MNAR under our protocol compared with more baseline methods using distribution alignment (DA)
[1]. Note that CoMatch [4] (a recently-proposed graph-based SSL method integrating contrastive learning) also combines DA
to improve the quality of pseudo-labels in the conventional SSL setting.

Method
CIFAR-10 (nL = 40) CIFAR-10 (nL = 250) CIFAR-100 (nL = 2500) mini-ImageNet (nL = 1000)

N1 = 10 20 100 200 100 200 40 80

CoMatch 60.27 39.48 57.87 26.77 48.02 30.08 30.24 21.47

FixMatch 85.72 76.53 69.76 46.53 61.31 41.38 36.20 28.33
+ DA 71.23↓14.49 47.85↓28.68 61.8↓7.96 27.61↓18.92 50.94↓10.37 31.82↓9.56 33.87↓2.33 23.53↓4.78

+ PRG (Ours) 91.87↑6.15 77.44↑0.91 93.93↑24.17 67.86↑21.33 61.49↑0.18 49.84↑8.46 39.99↑3.79 35.39↑7.069
+ PRGLast (Ours) 85.66↓0.06 77.85↑1.32 92.80↑23.04 64.00↑17.47 60.41↓0.90 43.80↑2.42 39.84↑3.64 33.10↑4.77

D.2. Empirical Analysis on PRG

Different from Fig. 4, the color blocks in the heatmap in Fig. 8 almost cover the entire diagram, and some color blocks are
not missing as the training progresses, i.e., with the help of PRG, the information exchange between classes remains frequent
during the learning process, and the model maintains the pseudo-rectifying ability for almost all classes.

D.3. More Evaluations on PRG

D.3.1 More MNAR Scenarios

Table 9: Accuracy (%) on CIFAR-10 with
nL = 40 and various γu under our protocol.

Method γu = 20 γu = 50 γu = 100

CoMatch 52.73 46.20 38.85

FixMatch 57.54 54.82 50.67
+ DA 54.08↓3.46 46.71↓8.11 41.37↓9.30

+ CADR 49.38↓8.16 45.27↓9.55 42.30↓8.37

+ PRG (Ours) 62.43↑4.90 62.44↑7.62 58.23↑7.56

We also provide more experiments on the setting of balanced labeled
data with imbalanced unlabeled data, which is summarized in Tab. 9.
For specific, we set nL = 40 with balanced distribution and set γu =
50, 100, 200 for imbalanced unlabeled data, i.e., the class-wise number

of unlabeled data Mi = M1 × γ
− k−i

k−1
u , where M1 = 5000 in CIFAR-

10. As shown in Tab. 9, PRG outperforms all baseline methods by a
large margin (the performance of CADR is even weaker than original
FixMatch), proving the robustness of PRG in this MNAR scenario due
to the unbiased guidance derived from the class transition history.



Table 10: Class-wise precision and recall on CIFAR-10 during the training under CADR’s protocol with γ = 50.

Method Class Index 30000 Iterations 90000 Iterations 150000 Iterations
Precision Recall Precision Recall Precision Recall

FixMatch

1 45.21 95.22 46.89 96.72 47.93 97.80
2 49.12 99.01 49.59 99.27 50.27 98.72
3 38.49 88.73 39.74 88.43 70.26 89.47
4 75.02 68.13 75.63 72.19 82.04 75.93
5 86.14 88.43 86.88 90.21 88.42 94.38
6 89.45 62.93 91.03 64.4 89.31 75.98
7 86.47 90.03 90.23 8.89 91.37 94.80
8 89.09 75.94 90.48 75.21 95.32 75.37
9 99.02 0.00 97.95 1.00 97.21 2.00
10 0.00 0.00 99.60 0.33 98.60 0.67

+ PRG (Ours)

1 70.52 93.52 87.34 95.50 88.25 95.34
2 82.53 98.21 96.03 98.32 96.78 98.56
3 73.52 76.54 90.92 89.85 92.37 90.57
4 70.21 73.77 85.36 80.51 87.89 81.37
5 79.03 86.57 90.31 96.31 92.74 96.19
6 74.55 61.03 90.58 79.88 90.97 82.43
7 89.12 91.40 93.09 97.02 93.79 98.03
8 92.58 80.14 95.01 96.21 96.32 97.50
9 96.31 76.50 95.22 92.12 95.63 93.55
10 96.56 62.52 96.95 96.01 97.15 96.81

Table 11: Accuracy (%) in MNAR under our protocol with more SSL learners.

Method
CIFAR-10 (nL = 40) CIFAR-10 (nL = 250) CIFAR-100 (nL = 2500) mini-ImageNet (nL = 1000)

N1 = 10 20 100 200 100 200 40 80

FlexMatch 90.86 84.53 79.13 55.40 61.49 45.26 39.45 34.18
+ PRG (Ours) 92.17↑1.31 88.46↑3.93 93.95↑14.82 69.88↑14.48 65.29↑3.80 50.31↑5.05 41.02↑1.57 36.59↑2.41
+ PRGLast (Ours) 91.03↑0.17 89.42↑4.89 92.94↑13.81 67.07↑11.67 64.66↓3.17 48.82↑3.56 41.25↑1.80 35.16↑0.98

D.3.2 More Metrics

To comprehensively explore the improvement of PRG in MNAR, we report the difference in class-wise precision and recall
with/without PRG. The experimental results are shown in Tab. 10. Compared to original FixMatch, we witness FixMatch with
PRG achieves higer precision/recall by and large, especially on rare classes (i.e., class with larger index), which demonstrates
that the bias removal capability of PRG effectively mitigates the effect of MNAR on the model. We also observe that both
PRG and FixMatch achieve high precision as well as recall on popular classes and high precision but low recall on rare classes
(especially FixMatch) in the early training period. The improvement of recall by PRG is due to the activated class transitions,
which gives the model a certain probability to assign pseudo-labels to rare classes.

D.3.3 More SSL Learners

Moreover, to further evaluate PRG’s performance, we consider building PRG on the top of more SSL frameworks. Thus, we
firstly conduct experiments on CIFAR-10 under CADR’s protocol with UPS [5] combining PRG. UPS is a recently-proposed
uncertainty-aware pseudo-label selection framework for SSL, which is the SOTA method among pseudo-labeling based
methods. We keep all training settings the same as the original UPS. With γ = 20, UPS achieves an accuracy of 30.46%
whereas UPS with PRG achieves an accuracy of 32.22%. We note that UPS performs poorly in the MNAR scenarios because
it is a more pure pseudo-labeling approach that does not introduce consistency regularization to improve model performance.
Also we observe that PRG improves UPS marginally, much less than FixMatch. This is understandable because the negative
learning that UPS prides itself on can be potentially negatively affected by the probability distribution of pseudo-label being
adjusted by PRG, e.g., uncertainty being altered. Next, we adopt a more advanced SSL learner FlexMatch [8] to evaluate PRG,
which is shown in Tab. 11. PRG still complements the unrobustness of this strong SSL method in MNAR.



Table 12: Accuracy (%) in the conventional setting with various nL. Results of baselines are reported in CADR [3] while
results of ∗ are based on our reimplementation.

Method
CIFAR-10 CIFAR-100 mini-ImageNet

nL = 40 250 4000 400 2500 10000 1000

FixMatch 88.61±3.35 94.93±0.33 95.69±0.15 50.05±3.01 71.36±0.24 76.82±0.11 39.03±0.66
∗

+ CADR 94.41↑5.80 94.35↓0.58 95.59↓0.10 52.90↑2.85 70.61↓0.75 76.93↑0.11 -
+ PRG (Ours) 94.44↑5.83±0.16 94.42↓0.51±0.06 95.38↓0.31±0.10 52.45↑2.40±3.75 70.12↓1.24±0.21 76.49↓0.33±0.42 47.34↑8.31±1.60

+ PRGLast (Ours) 93.00↑4.39±0.79 94.43↓0.50±0.33 95.75↑0.06±0.11 48.81↓1.24±0.15 70.01↓1.35±0.02 77.12↑0.30±0.13 48.23↑9.20±0.59

D.3.4 More Data Types

The results of VIME combined with PRG on tabular data are shown in Tab. 4. VIME [7] is a prevailing self- and semi-
supervised learning frameworks for tabular data with pretext task of estimating mask vectors from corrupted tabular data. We
implement PRG above the semi-supervised learning component of VIME. PRG provide pseudo-rectifying guidance to rescale
the pseudo-labels for the original unlabeled sample in VIME. Specially, we replace the consistency loss used in VIME (i.e.,
mean squared error in Eq. (9) in [7]) with standard cross-entropy loss to makes PRG applicable to VIME.

D.3.5 Coventional SSL Setting

As shown in Tab. 12, our method still works well in the conventional SSL setting, i.e., both the labeled data and the unlabeled
data are balanced. The class-level guidance offered by our method is also valid in the conventional setting while maintaining
the vitality of class transition, even though there is not too much need to remove bias on label imputation.
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