
Supplementary Material

A. Parallel and compartmentalized training of

SAFE

In the following section we review the Open-InCA archi-
tecture and its use for efficient training of compartmental-
ized adapters in SAFE. In our training we are able to train
all adapters in parallel while having exact control of each
parameter’s access to samples’ gradients. This approach
enables us to define the Shard Graph flexibly and provide
custom “data access” to each adapter while training all of
SAFE’s adapters in parallel.

Open-InCA. In the work of [15] it is shown that lightweight
cross-attention adapters attached to intermediate network
representations are capable of extracting relevant represen-
tations and achieving competitive accuracy relative to ex-
pensive full fine-tuning. For regular learning, given an acti-
vation map z of a pre-trained model, the InCA adapter struc-
ture is defined as

e = cross-attention✓1(z, [q])

y = Linear✓2(e).

By learning the cross-attention layer parameters and the
query q, the adapter is capable of extracting task-relevant
representations from the activation map z.

For more flexible learning scenarios the authors present
Open-InCA, where each class prediction is computed via
a separately learned query and class-head parameters,

e = cross-attention✓1(z, [q1, . . . qC])

y = Diag-Linear✓2(e).

Here Diag-Linear✓2 is a mapping that takes the query
embeddings [e1, . . . , eC] and acts on them “diagonally”
through the classification vectors [v1, . . . , vC]:

yi := vi · ei.

We follow the Open-InCA approach which is originally de-
fined for class incremental learning, but for our settings we
would like to achieve complete isolation of the learning of
each adapter.

Adapter isolation. To achieve isolated learning of each
adapter we apply Open-InCA’s “query only learning” [15].
This amounts to not optimizing the cross-attention layer
weights ✓1 and only training [q1, . . . qc] and the separate
classification head parameters [v1, . . . vc]. Nonetheless, ap-
plied with the traditional softmax and Cross-Entropy loss,
query only training still leaks information of each sample in
the batch to each adapter. Recall that softmax is defined as

[softmax(y)]i =
exp(yi)PC

k=1 exp(yk)
.

The softmax’s gradient of each class prediction will be
affected by the predictions of all other adapters (due to
the denominator), thereby leaking information. To rectify
this, we replace the softmax with a sigmoidal mapping
�(yi) = 1

exp(�yi)+1 , so the loss of each adapter predic-
tion relies solely on the adapter’s logit value yi. Using the
sigmoidal mapping enables us to use SAFE in more flex-
ible learning settings. This is because now each node in
the shard graph can be responsible for learning just a single
binary classifier for a particular class.

Transitioning to Open-InCA with sigmoidal loss results in
hundreds or even thousands of individually learned binary
classifiers. Trained sequentially the vast number of adapters
will result in prohibitively long training time.

Loss masking. Instead we show that we can learn all of the
adapters within an Open-InCA adapter in parallel while still
isolating information via loss masking. As stated in Eq. (4)
of the manuscript the different queries of the Open-InCA

(A)

(B)

(C)

Figure 6. SAFE Compartmentalized training with Open-InCA

We illustrate the use of Open-InCA for efficient and parallelized
training with SAFE. (A) In Open-InCA, each learned binary clas-
sifier corresponds to its own dedicated query (yellow) and class-
head (orange), in blue is the shared frozen cross-attention module.
(B) Given a data-sample (green), we may control which adapters
can be updated with its gradient, and based on the architectural
choice there will be no information leakage. (C) Using a batch of
data-samples and a graph topology of data access rights, we can
learn all adapters in parallel using loss masking which automati-
cally blocks and routes gradients to their appropriate adapters.

adapter can be de-composed as

CA✓(z, [q,q
0]) = [CA✓(z, [q]),CA✓(z, [q

0])].

By using the sigmoid mapping we compute the loss for each
Open-InCA binary-class adapter as

Li,j =� ŷ
(i)
j · log(�(CA✓(z, [qi]))

� (1� ŷ
(i)
j) · log(1� �(CA✓(z, [qi])),

where ŷ
(i)
j is 1 if example j is a positive example for the

class corresponding to adapter i, and 0 otherwise. For a
batch of B samples and a set of M adapters, we obtain the
loss matrix L 2 RM⇥B . Each loss entry Li,j is computed
with frozen cross-attention parameters and the gradients are
based on the learnable parameters of only the ith adapter
(due to �):

@Li,j

@qk
= 0 for k 6= i.

This implies any summation with {ai} 2 RM

` =
MX

k=1

akLk,j

has the property of reducing to a single term after differen-
tiation

@L

@qi
= ai ·

@Li,j

@qi
.

This is highly convenient in automatic differentiation pack-
ages, as it reduces our entire optimization (optimizing each
adapter) into a single “backwards” call with the summed
loss `. In particular, for a given SG topology we can define
A for a data batch with A 2 {0, 1}M⇥B such that

Aij =

(
1 if shard i has access to data sample j

0 otherwise

With this we can optimize the entire SAFE ensemble in par-
allel in a compartmentalized manner by directly optimizing
the objective ` =

P
(L�A) where � denotes the Hadamard

product and
P

is computed over all the matrix entries.

DP-SAFE. For the mixed-privacy DP-SAFE method we
can follow a similar process in which we compute a private
loss and a non-private loss using 2 separate masking rules
defined via ADP 2 {0, 1}M⇥B and Adirect 2 {0, 1}M⇥B ac-
companied by respective optimizers DP-SGD and AdamW.

B. Additional Ablations

Additional Sharding Scales. In Table 5, Table 6, and Ta-
ble 7 we report the accuracies of SAFE, SISA, and Pro-
toSISA across a larger range of sharding scales, namely
2, 4, 8, 16, 32, 64, 128, 256. We see that SAFE outperforms

SISA on average across all sharding scales, with the gap
peaking at 14.3% at 256 shards. Furthermore while the Pro-
toSISA method improves over SISA at the large sharding
scales � 64, it still underperforms SAFE by a margin of
(3.8%� 10.1%).

SAFE without prototypes. SAFE benefits from both
synergy-aware sharding and the inductive bias of the proto-
type model. To separate out these two factors, we consider
the SAFE method without prototypes, which we call “No-
protoSAFE”. In Fig. 8 we compare the accuracy of SAFE,
NoprotoSAFE, and SISA. We see that at the large shard-
ing scales, the use of prototypes in SAFE gives a modest
boost in test accuracy 0.5 � 2.5% over NoprotoSAFE. We
see that NoprotoSAFE still significantly outperforms SISA,
with margins as high as 10 � 30%, particularly at the large
sharding scales � 64. We conclude that the synergy-aware
sharding of the SAFE method is the primary factor for the
boost in performance over SISA.

SAFE and SISA using a linear model. Another efficient
approach to adapting large pretrained models is to perform
head-only finetuning, where only a linear classifier head is
trained. Thus a natural question is how do SAFE, SISA,
and ProtoSISA perform when replacing the InCA adapters
with linear models. In Fig. 7 we report the gain in test accu-
racy when using the InCA model relative to a linear model
at different sharding scales for the various methods. We
see that for the SAFE method the InCA model uniformly
outperforms the linear model at all sharding scales. For
SISA and ProtoSISA, at the larger sharding scales � 64
the linear model starts to outperform in some cases. We
suspect that SISA and ProtoSISA have difficulty training
the cross-attention module when there are very few exam-
ples per shard, whereas the synergistic sharding of SAFE
enables it to successfully train a more complex model.

C. Analysis of the Shard Graph

In Section 4, we theoretically analyze the expected forget-
ting costs of SAFE for different shard graph topologies. To
understand the effect of different topologies, we consider a
graph with a determined connectivity level, defined by as-
signing each node in V d outbound edges. When present-
ing SAFE, we concluded that when using a disjoint clique
structure for the Shard Graph the expected cost to forget
a sample x (i.e. the number of samples required for re-
training) is E|Mx| = d · |S|. We note this is the optimal
case and if the degree d connectivity is applied uniformly
at random, E|Mx| is in fact an order of magnitude larger
E|Mx| ⇠ d

2 · |S|. Below we present a formal statement
and proof that E|Mx| ⇠ d

2 · |S| for a graph with random
connectivity.

Theorem 1. Suppose we have a set of nodes V =

Figure 7. InCA vs. Linear. We report the difference in test accuracy between using the InCA model and using a linear model for the
methods SAFE, SISA, and ProtoSISA at sharding scales 1, 2, 4, 8, 16, 32, 64, 128, 256. Positive values correspond to InCA having higher
accuracy, negative values correspond to the linear model having higher accuracy. Each box corresponds to 7 values, specifically the test
accuracy over the 7 datasets we consider. The boxes corresponding to SAFE, SISA, and ProtoSISA are colored green, red, and blue
respectively.

Figure 8. SAFE without prototypes. We provide comparisons against SAFE with and without applying prototypes. SAFE without
applying prototypes is dubbed “NoprotoSAFE”. Each box in the subplots corresponds to 7 values, one for each of the datasets. (Left)

SAFE vs. NoprotoSAFE. We report the difference in test accuracy between SAFE and NoprotoSAFE. Positive values correspond to SAFE
outperforming, negative values correspond to NoprotoSAFE outperforming. (Right) SISA vs. NoprotoSAFE. We report the difference
in test accuracy between SISA and NoprotoSAFE. Positive values correspond to SISA outperforming, negative values correspond to
NoprotoSAFE outperforming.

{S1, . . . , Sn} where each Si is a source of data and Si \
Sj = ; for i 6= j. Furthermore assume that all the sources

are of the same size, i.e. |S1| = |S2| = · · · = |Sn|. Suppose

each node is assigned d outbound edges independently and

uniformly (in addition to the default self-connection). Fur-

thermore assume that d
2 C|V |1/2 for some C > 0. Then

the expected number of samples |Mx| needed for retraining

upon a forget request for a sample x is

E|Mx| = ⇥(|S1|d2).

Proof. Assume we receive a forget request for a sample
x 2 Si. By uniformity without loss of generality we may
assume that i = 1. We will let Z be a random variable de-
noting the number of samples we must retrain on whenever
receiving a forget request for a sample x 2 S1 where the
randomness is taken over the selection of the edges E of
the graph. For a node n let Nin(n) = {v : (v, n) 2 E}
denote the inbound neighborhood of n and let Nout(n) =
{v : (n, v) 2 E} denote the outbound neighborhood of n.
Then we have that

Z =

������

[

n2Nin(S1)

[

v2Nout(n)

v \ {x}

������
.

We note then that

Z
X

n2Nin(S1)

X

v2Nout(n)

|S1|

 |Nin(S1)|(d+ 1)|S1|.

Therefore

E[Z] |S1|(d+ 1)E[|Nin(S1)|]

We note that for each node v 2 V \ S1 that I[v 2 Nin(S1)]
is a Bernoulli random variable taking the value 1 with
probability d

|V |�1 . Furthermore by default we know that
S1 2 Nin(S1). Therefore

|Nin(S1)|� 1 =
X

v2V \S1

I[v 2 Nin(S1)]

is a sum of |V | � 1 independent Bernoulli random vari-
ables. Thus |Nin(S1)| � 1 obeys the Binomial distribution
Bin(|V |� 1, d

|V |�1) which has mean d. Thus

E[|Nin(S1)|] = d+ 1

and we conclude that

E[Z] |S1|(d+ 1)2 = O(|S1|d2).

Now we will prove the lower bound. We note for d = 1 the
statement is trivial so we might as well assume d � 2. Since
we are seeking a lower bound we may assume that after the
forget request is received the entire source S1 is dropped, as
this only decreases the number of samples needed to retrain.
In this case

Z =

������

[

n2Nin(S1)\S1

[

v2Nout(n)\S1

v

������
.

We will focus on estimating the conditional expectation

E[Z| |Nin(S1) \ S1| = k].

We note that by uniformity that the distribution of Z de-
pends only on the size of Nin(S1) \ S1 and not the specific
collection of nodes in Nin(S1) \ S1. Thus we will fix a
choice {n1, . . . , nk} of k nodes for Nin(S1) \ S1. Let E
denote the event that Nin(S1) \ S1 = {n1, . . . , nk} and let
PE(•) := P(•|E) denote the probability of an event condi-
tioned on E. We note then that

E[Z| |Nin(S1) \ S1| = k] = E[Z|E].

Let Ai = Nout(ni) \ S1 for i = 1, . . . , k. We note that if
A1, A2, . . . , Ak are disjoint then Z = kd · |S1|. Thus we
have that

E
⇥
Z
�� E
⇤

� kd · |S1| · PE(Ai \Aj = ; 81 i 6= j k).

Thus we proceed to lower bound

PE(Ai \Aj = ; 81 i 6= j k).

The number of disjoint choices of A1, A2, . . . , Ak is

k�1Y

j=0

✓
|V |� (k + 1)� j(d� 1)

d� 1

◆
.

The number of total choices of A1, A2, . . . , Ak is
✓
|V |� 2

d� 1

◆k

.

Thus we have

PE(Ai \Aj = ; 81 i 6= j k)

�
"�|V |�(k+1)�(k�1)(d�1)

d�1

�
�|V |�2

d�1

�

#k
.

Now assume that k 2 [(1 � t)d, (1 + t)d] for some fixed
t 2 (0, 1). Note then that

"�|V |�(k+1)�(k�1)(d�1)
d�1

�
�|V |�2

d�1

�

#k
�

(|V |� kd)d�1

(|V |� 2)d�1

�k

�

(|V |� kd)d�1

|V |d�1

�k

�

|V |� kd

|V |

�kd

=

1� kd

|V |

�kd
.

Now using the fact that d2 C|V |1/2 and k (1 + t)d
2d, we have that

1� kd

|V |

�kd
�

1� 2d2

|V |

�2d2

�

1� 2C

|V |1/2

�2C|V |1/2

=

1� 4C2

2C|V |1/2

�2C|V |1/2

= e
�4C2

+ o(1) = ⌦(1).

Thus it follows for k 2 [(1� t)d, (1+ t)d] we have that

E[Z| |Nin(S1) \ S1| = k]

� |S1|d · k · PE(Ai \Aj = ; 81 i 6= j k)

= ⌦((1� t)|S1|d2).

We note it then suffices to show that for some fixed t 2
(0, 1)

P (|Nin(S1) \ S1| 2 [(1� t)d, (1 + t)d]) = ⌦(1).

We recall that for each node v 2 V \S1 that I[v 2 Nin(S1)]
is a Bernoulli random variable taking the value 1 with prob-
ability d

|V |�1 . Thus

|Nin(S1) \ S1| =
X

v2V \S1

I[v 2 Nin(S1)]

is a sum of |V | � 1 independent Bernoulli random vari-
ables. Thus |Nin(S1) \ S1| obeys the Binomial distribu-
tion Bin(|V | � 1, d

|V |�1) which has mean d and variance
d(1 � d

|V |�1). Now let W = |Nin(S1) \ S1|. Then by
Chebyshev’s inequality for t > 0

P (|W � d| � td)
(1� d

|V |�1)

dt2
 1

dt2
.

We note since d � 2 we can choose t =
p
2p
3

so that 1
dt2 3

4 .
Thus with probability at least 1/4 we have that

|Nin(S1) \ S1| 2 [(1� t)d, (1 + t)d].

It follows that E[Z] = ⌦(|S1|d2).

D. Stochastic forgetting

Below we provide a general definition for probabilistic un-
learning:

Definition 1. (↵,�)�sharded-unlearning: Consider an al-

gorithm A that, given a shard graph G as input, outputs a

model A(G) trained on the shards of G. If G
0

is a shard

�

�

�
� �

�
�

�

� = �

� = �
� = �� = �

� = �

� = �
�

� �

Figure 9. Shard-Graph in SAFE-DP: In SAFE-DP each shard
when training adapters uses its own data non-privately, but en-
forces DP when using data from other shards. This can visualized
as shard graphs with weighted edges, where the edge weight mea-
sures the privacy leakage between the interacting nodes.

graph that can be obtained by removing data or nodes from

G, we write G
0 4 G. We say that U is an (↵,�)-unlearning

algorithm for A if for all G
0 4 G and events E

P(U(A(G), G0) 2 ⇥) e
↵P(A(G0) 2 ⇥) + �.

Note that the definition bares resemblance to the definition
of differential privacy, which says that:

Definition 2. [16] (✏, �)�differential privacy: An algo-

rithm A, is said to be (✏, �)�DP for ✏ > 0 and � ⌧ 1,

if for all adjacent datasets D,D
0

(such that D and D
0

dif-

fer in at most one sample), and all possible events ⇥, the

following relation holds:

P(A(D) 2 ⇥) e
✏P(A(D0) 2 ⇥) + �.

Training a model with a DP algorithm (for instance DP-
SGD [1]), enables us to perform free (↵,�)-unlearning for
1-forget request, by choosing ↵ = ✏ and � = �. “Free” here
means that the model need not be changed after a forget-
ting request as it still satisfies the (↵,�)�unlearning guar-
antee. However, as we get sequential forgetting requests
(� 1), the privacy bound weakens resulting in more leak-
age. To understand the effectiveness of differential privacy
in forgetting, we need to capture its exact behaviour (✏, �)
when provided with k sequential forgetting requests. More
precisely we get the following result for group differential
privacy:

Theorem 2. [16] Group privacy: Let A, be an (✏, �)�DP

algorithm. Then for all D,D
0
, such that D and D

0
differ in

at most k samples, we get the following result:

P(A(D) 2 ⇥) e
✏gP(A(D0) 2 ⇥) + �g,

where ✏g = k✏ and �g =
e
k✏ � 1

e✏ � 1
�

We observe that the group privacy result, i.e. (✏g, �g) =
�
e
k✏
,
e
k✏ � 1

e✏ � 1
�
�
, weakens with increasing k. This necessi-

tates the notion of a privacy budget (↵b, �b) which is an up-
per bound for the privacy leakage accumulation with suc-
cessive forgetting requests. This budget can be chosen by
the user, or in some cases, constrained by the fact that
e
k✏ � 1

e✏ � 1
� 1.

Differential privacy can detrimentally reduce the utility (ac-
curacy) of a model. Hence, blindly using DP-SGD (or
any another DP method) during training may result in
models that, while strongly private (and hence not requir-
ing frequent re-training) attain significantly lower accuracy.
SAFE provides a simple yet effective unlearning mecha-
nism which enables forgetting shards, by re-training the
neighbouring contaminated shards (requires frequent yet re-
duced re-training, but higher accuracy). These observations
inspire us to design an algorithm which combines SAFE
and Stochastic Forgetting:

SAFE-DP: For each shard Si in the shard graph G, we train
a binary classification model which treats the data at node
Si as the positive class (without privacy), and data at neigh-
bouring nodes pointing to it as the negative classes (with
privacy). When asked to forget a sample in Si we can sim-
ply drop the classifier for the shard Si (later re-train if man-
dated by the privacy cost of the budget), without having
to worry about re-training models corresponding to other
shards which used Si as a negative class (since the data of
the negative shards was trained with DP).

Unlike the standard version of SAFE, where all the connec-
tions of shard Si (using Si for training) need to re-trained
upon a single forget request, SAFE-DP allows us to keep the
remaining neighboring shards while accounting for some
cost to the privacy budget. By allowing each shard Si to use
its own data non-privately, SAFE-DP also provides better
utility compared to completely private models (trained with
DP). While training with SAFE-DP, we compute the total
(↵,�) using the composition property of DP [16, 37, 26].

Privacy Accounting: The SAFE-DP algorithm is defined
with an accompanying privacy level given by (✏, �), which
sets the DP training parameters in SAFE-DP (using DP-
SGD [1, 24]). While the (↵,�) parameters in the unlearn-
ing definition (Definition 1) are dependent on the number of

sequential forgetting requests k, SAFE-DP provides the fol-

lowing unlearning guarantees: ↵ = k✏ and � =
e
k✏ � 1

e✏ � 1
�,

where � 1 (from Theorem 2).

Before the start of training, the user chooses a desired for-
getting budget (↵b,�b) (with �b 1), which measures the
information contained (privacy leakage) about the user after
forgetting her samples. The forgetting algorithm should re-
spect the budget while providing non-vacuous guarantees.
This provides us with the following bound for the number
of unlearning request before full re-training: When � ⌧ 1
and � ⌧ �b, we can approximate this result with

k = min

↵b

✏
,

log
⇣
�b(e✏ � 1)/� + 1

⌘

✏

!
.

For our experiments we assume ↵b = 30 and
�b = 1. We vary ✏ = {1, 2, 3, 4} and � =
1e�10, 1e�11, 1e�12, 1e�13 and choose different values
for k. Note that we can choose the values for k by varying
both ✏ and � (ensuring � ⌧ 1) and choosing the best value
by comparing the accuracy on a held out validation set.

E. Additional Details of Architecture and

Training

Optimized graph structures. For our SAFE method, in
Section 5 we described the bi-level sharding structure where
we split the dataset into a number nc “coarse shards” via
class balanced sub-sampling which are further split into nf

“fine shards” via class partitioning. The total number of
shards is given by n = nc · nf . In Table 4 we report the
choice of (nc, nf) used for each dataset for each value of n
for the SAFE method.

Optimization. Whenever training InCA adapters, we train
using AdamW for 30 epochs using cosine annealing and
starting learning rate lr = 0.05; we use weight decay of
10�4. Whenever training the linear model for the exper-
iment in Fig. 7 we lower the learning rate to lr = 3e�4
as we observed this increased performance. For the linear
model all other hyperparameters remain the same as when
training the InCA adapter.

Architecture. When using InCA adapters, LayerNorm is
applied to both the inputs and queries separately before they
are passed through the cross-attention block. A second Lay-
erNorm is applied after the cross-attention before the final
logits are computed as customary in ViTs. While in gen-
eral InCA adapters can be applied to any layer in the net-
work [15], in our experiments we always attach it to the
penultimate layer, namely the end of block 22 (the input to
blocks.23.norm1). When using linear adapters for the
experiment depicted in Fig. 7, we also apply LayerNorm
before the fully connected layer.

Figure 10. The InCA Architecture. Each class i has a query qi
and a head vector vi. The logit for class i given by the inner prod-
uct vi · cross-attention(z, qi) where z = (z1, . . . , zn) = fw(x)
is the embedding extracted from a frozen pre-trained model.

Prototype model. We note that the prototype model is only
added at inference time, not training time, as adding the
prototype model during training would expose each adapter
to information from all other training samples, thus break-
ing the information compartmentalization. When comput-
ing the prototypes pk, we normalize the feature embeddings

pk =
1

Nc

X

(x,y)2D(k)

fw(x)

kfw(x)k

which makes the prototypes less sensitive to outliers and
leads to better predictions.

Dataset details. In Table 3 we report the size of the training
and testing splits and number of classes for the 7 datasets we
consider, and links to access the data.

F. Additional Related Work

In our work we present SAFE as a method that flexibly
learns a model composed of model parts that are learned us-
ing different data (as prescribed by the Shard Graph). This
heterogeneous routing of data during training enables train-
ing the different model components in parallel and permits
training hundreds of models quickly and efficiently. While
we apply this approach for the problem of forgetting, re-
cently “heterogeneous data routing” has also been the fo-
cus of much work in enabling better massive model scal-
ing. In these works, “heterogeneous data routing” is used to
route different data and activations to different model parts
and distributing the computation to more computing nodes.
Through distribution of computation, one can reduce the in-
ference and training costs of foundation models and enable
even more parameters than what is permissible by a single
monolithic model [17]. In the work of [17] a large language
model based on the transformer architecture is built with

Dataset Training Images Testing Images # Classes URL

Caltech-256 [27] 15,418 15,189 257 https://authors.library.caltech.edu/7694/

CIFAR-100 [33] 50,000 10,000 100 https://www.cs.toronto.edu/˜kriz/cifar.html

CUB-200 [47] 5,994 5,794 200 https://www.vision.caltech.edu/datasets/cub_200_2011/

DTD [13] 4,230 1,410 47 https://www.robots.ox.ac.uk/˜vgg/data/dtd/

MIT-67 [41] 5,360 1,340 67 https://web.mit.edu/torralba/www/indoor.html

Stanford Cars [32] 8,144 8,041 196 https://ai.stanford.edu/˜jkrause/cars/car_dataset.html

Stanford Dogs [30] 12,000 8,580 120 http://vision.stanford.edu/aditya86/ImageNetDogs/

Table 3. Dataset Information. We report the number of classes as well as the number of training and testing images for each dataset, as
well as links to download the datasets.

dynamic execution layers, where the model’s intermediate
activations are routed into disjoint layers based on their rep-
resentations via “switching layers”. This is generalized in
the work of Pathways [3] that creates the necessary infras-
tructure to train such models on distributed computing sys-
tems and allows training state-of-the-art language models
[12]. The latest developments [18, 19] of this method ap-
ply heterogeneous propagation of data in connection with
multi-task learning where “agent networks” cooperate with
partner-agent representations to adapt and solve new tasks.
We note while both [17, 3] and our work utilize heteroge-
neous data routing, in our work data routing and compart-
mentalization is deterministic and is based on pre-specified
data usage rules codified by the Shard Graph, as opposed
to selecting the data routing based on the data’s represen-
tations. Overall our work focuses on the problem of for-
getting rather than multi-task learning and increasing the
model scale.

https://authors.library.caltech.edu/7694/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.robots.ox.ac.uk/~vgg/data/dtd/
https://web.mit.edu/torralba/www/indoor.html
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://vision.stanford.edu/aditya86/ImageNetDogs/

Dataset\ Num. Shards 2 4 8 16 32 64 128 256

Caltech-256 (2, 1) (4, 1) (4, 2) (4, 4) (4, 8) (4, 16) (4, 32) (8, 32)
CIFAR-100 (2, 1) (4, 1) (8, 1) (8, 2) (8, 4) (16, 4) (16, 8) (16, 16)
CUB-200 (2, 1) (4, 1) (4, 2) (8, 2) (8, 4) (8, 8) (4, 32) (8, 32)

DTD (2, 1) (4, 1) (4, 2) (8, 2) (8, 4) (8, 8) (16, 8) (16, 16)
MIT-67 (2, 1) (2, 2) (2, 4) (8, 2) (8, 4) (8, 8) (8, 16) (16, 16)

Stanf. Cars (2, 1) (2, 2) (2, 4) (4, 4) (4, 8) (8, 8) (8, 16) (8, 32)
Stanf. Dogs (2, 1) (4, 1) (8, 1) (8, 2) (16, 2) (16, 4) (16, 8) (16, 16)

Table 4. Coarse vs. fine shard split. We report the number of coarse and fine shards, (nc, nf), used for each dataset at the different
sharding levels.

Dataset No sharding Prototypes 2 4 8 16 32 64 128 256

Caltech-256 94.3% 93.2% 94.2% 94.1% 94.0% 93.7% 93.7% 93.5% 93.2% 93.3%
CIFAR-100 83.1% 71.2% 84.4% 84.6% 84.1% 83.3% 82.8% 82.2% 81.5% 80.9%
CUB-200 88.3% 85.8% 88.6% 87.9% 86.1% 85.8% 85.3% 83.5% 82.5% 84.5%

DTD 77.8% 73.8% 78.3% 78.3% 77.1% 75.4% 75.5% 75.1% 73.9% 74.2%
MIT-67 87.9% 85.8% 88.1% 87.7% 86.9% 86.3% 86.5% 86.0% 86.2% 86.4%

Stanf. Cars 75.7% 41.0% 72.6% 68.5% 62.1% 58.3% 53.2% 47.4% 41.9% 36.2%
Stanf. Dogs 87.9% 88.0% 88.9% 89.2% 89.2% 89.0% 88.6% 88.3% 87.7% 87.8%

Avg. 85.0% 77.0% 85.0% 84.3% 82.8% 81.7% 80.8% 79.4% 78.1% 77.6%
Table 5. SAFE Accuracy at different sharding scales. We report the accuracy of SAFE across different sharding scales.

Dataset No sharding Prototypes 2 4 8 16 32 64 128 256

Caltech-256 94.3% 93.2% 94.2% 94.1% 93.6% 92.8% 90.1% 86.7% 84.9% 84.6%
CIFAR-100 83.1% 71.2% 84.5% 84.6% 84.0% 83.2% 82.0% 80.7% 79.7% 77.6%
CUB-200 88.3% 85.8% 88.5% 87.6% 83.9% 73.1% 65.3% 65.1% 62.8% 63.7%

DTD 77.8% 73.8% 78.3% 78.1% 76.1% 74.6% 71.8% 65.1% 58.6% 52.6%
MIT-67 87.9% 85.8% 88.1% 87.7% 86.8% 85.2% 83.6% 81.5% 77.5% 77.9%

Stanf. Cars 75.7% 41.0% 72.1% 66.0% 55.8% 40.9% 23.7% 17.1% 13.2% 7.0%
Stanf. Dogs 87.9% 88.0% 88.8% 89.2% 89.2% 88.6% 86.5% 83.1% 81.1% 79.8%

Avg. 85.0% 77.0% 84.9% 83.9% 81.4% 76.9% 71.9% 68.5% 65.4% 63.3%
Table 6. SISA Accuracy at different sharding scales. We report the accuracy of SISA across different sharding scales.

Dataset No sharding Prototypes 2 4 8 16 32 64 128 256

Caltech-256 94.3% 93.2% 94.2% 94.1% 93.6% 92.8% 90.1% 86.8% 86.4% 90.5%
CIFAR-100 83.1% 71.2% 84.5% 84.6% 84.0% 83.2% 82.0% 80.7% 79.7% 77.7%
CUB-200 88.3% 85.8% 88.5% 87.6% 83.9% 73.1% 65.7% 67.8% 73.5% 83.5%

DTD 77.8% 73.8% 78.3% 78.1% 76.1% 74.6% 71.8% 66.7% 67.5% 71.2%
MIT-67 87.9% 85.8% 88.1% 87.7% 86.9% 85.2% 83.9% 81.7% 81.2% 84.4%

Stanf. Cars 75.7% 41.0% 72.1% 66.0% 55.8% 40.9% 23.9% 17.8% 16.9% 25.5%
Stanf. Dogs 87.9% 88.0% 88.8% 89.2% 89.2% 88.6% 86.6% 83.2% 81.9% 83.5%

Avg. 85.0% 77.0% 84.9% 83.9% 81.4% 76.9% 72.0% 69.3% 69.6% 73.8%
Table 7. ProtoSISA Accuracy at different sharding scales. We report the accuracy of ProtoSISA across different sharding scales.

