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We use capital letters (e.g., Figure A) to refer to the sup-
plementary material and numbers (e.g., Figure 1) to refer to
the main paper.

In Section A, we provide further discussion on token se-
lection policies, optimizations to the query-key product, and
the ViViT temporal model. In Section B, we present addi-
tional experiments: action recognition on Kinetics-400, an
evaluation of a threshold policy, and an ablation of the gate
position. In Section C, we provide low-level details for the
experiments in the main paper. In Section D, we include
tables of results for the experiments in the main paper.

A. Further Discussion

The ViViT temporal sub-model. Recall that, for ViViT
action recognition, we fine-tune the non-Eventful temporal
model on the outputs of the Eventful spatial model. We
now provide some intuition as to why this is necessary to
preserve the prediction accuracy.

The outputs of an Eventful Transformer are approxima-
tions of the “correct” outputs (those of the original, non-
Eventful Transformer). In the case of the ViViT spatial
model, individual outputs are fairly close to the correct val-
ues. However, the pattern of temporal changes between out-
puts may be quite different from the original model. Token
gates reduce the number of updated tokens on each frame,
but each update tends to be larger (a single update may con-
tain accumulated changes from several time steps). Given
the nature of the prediction task – action recognition on
highly dynamic videos – the temporal sub-model is sensi-
tive to the pattern of temporal changes. Fine-tuning allows
us to correct for the shifts in these temporal changes that
result from using an Eventful spatial model.

Compatibility with spatial redundancy methods. We
now provide further discussion regarding the compatibility
of our method with spatial redundancy approaches. Ab-
stractly, we can think of spatial redundancy methods as
summarizing a set of tokens x ∈ RN×D using a reduced

set of tokens x̂ ∈ RM×D. The simple method in our exper-
iments summarizes tokens using uniform pooling; however,
we could also use adaptive pruning or merging.

Assume we apply a gate to the reduced tokens x̂. The
gate assumes that the definitions of its input tokens are rela-
tively stable. This assumption clearly holds for non-reduced
or uniformly pooled tokens. However, we need to be careful
when applying arbitrary reductions to x.

For example, say we have an image containing a region
of blue sky. An adaptive token merging method might com-
bine all sky-colored tokens from x into a single token in
x̂. Assume that on frame t = 1, the first token in x̂ repre-
sents the sky. Ideally, on frame t = 2, the first token in x̂
should again represent the sky. Note that this is not a strict
constraint – our gating logic can deal with non-consistent
definitions for a few tokens. However, if the definitions for
all tokens in x̂ completely change between frames, then the
gate will not be able to keep up (i.e., the number of tokens
with significant changes will exceed the policy r-value).

B. Additional Experiments
Video action recognition on Kinetics-400. We eval-
uate our method on the Kinetics-400 action recognition
dataset [2]. Kinetics-400 contains over 300k video clips,
each annotated with one of 400 action categories. We eval-
uate top-1 accuracy. We use the same ViViT model archi-
tecture as in our EPIC-Kitchens experiments; the only dif-
ference is the input size (224×224 rather than 320×320).

As in our EPIC-Kitchens experiments, we fine-tune the
non-Eventful temporal model on the outputs of the Eventful
spatial model. We fine-tune three variants of the model with
r =24, 48, and 96 (out of a maximum of 197 tokens). We
train for 10 epochs on a subset of the training set containing
39729 videos. We use the AdamW optimizer [4] with a
learning rate of 2×10-6, weight decay of 0.05, and a batch
size of 16 videos. We add 50% dropout before the final
classification layer.

Table A shows our results. The accuracy-compute



Table A. Kinetics-400 video action recognition. Results for
Kinetics-400 action recognition using the ViViT model. We re-
port the total TFlops per video (spatial + temporal sub-models).

Variant r Accuracy (%) TFlops

Base model – 79.06 3.360
Temporal 96 77.62 1.814
Temporal 48 75.88 1.016
Temporal 24 75.16 0.618

tradeoff is generally consistent with our results on EPIC-
Kitchens. For example, with r = 96, we sacrifice 1.48%
accuracy for a speedup of approximately 2x.

A threshold policy. We evaluate the ViTDet object detec-
tion model with a threshold policy. The threshold policy se-
lects all tokens where the L2 norm of e exceeds a threshold
h. We test h = 0.2, 1.0, and 5.0. See Table B for results.
The accuracy-compute tradeoff for the threshold policy is
generally worse than for the top-r policy. For example,
compare threshold h = 5.0 with r = 512 in Table C. This
is likely due to the use of a constant threshold for all gates
(we would ideally use a unique threshold for each gate).

C. Experiment Details
Fine-tuning ViTDet for VID. We initialize our model us-
ing COCO [3] pre-trained weights, and then trained on
a combination of the ImageNet VID and ImageNet DET
datasets, following common protocols in [1, 5]. We select
images from the DET dataset that are of of the same 30
classes as in the VID dataset. The training uses a batch size
of 8, a maximum input resolution of 1024×1024, an initial
learning rate of 10-4, and a weight decay of 0.1. We use the
AdamW optimizer [4] with linear warmup for a total of 5
epochs, with 10x learning rate decay from the 3rd epoch.

Fine-tuning the ViViT temporal model. We fine-tune the
temporal sub-model for 5 epochs. We use the AdamW opti-
mizer [4] with a learning rate of 10-5, weight decay of 0.05,
and a batch size of 8 videos. We add 50% dropout before
the final classification layer.

Arithmetic precision. We compute the product Av at half
precision in the global self-attention operators of the Event-
ful model. Using half precision reduces the model’s com-
putational cost and memory footprint and has a negligible
effect on accuracy. When evaluating runtimes, we also com-
pute Av at half precision in the base model (this ensures a
fair comparison).

Runtime experiments. For ViTDet, we evaluate CPU run-
times using one random video from VID (ID 00023010,
containing 242 frames). On the GPU, we use 5 random
videos. For ViViT, we evaluate CPU runtimes using 5 ran-
dom videos from EPIC-Kitchens. On the GPU, we use 100

Table B. A threshold policy. Results for a threshold policy with
the 1024-resolution ViTDet model. The policy selects tokens
where the error e exceeds a threshold h.

Variant h mAP50 (%) GFlops

Base model – 82.93 467.4
Temporal 0.2 83.00 431.8
Temporal 1.0 82.75 294.1
Temporal 5.0 78.11 133.5

random videos. We use a consistent random seed across all
experiment runs.

Operation counting. Our GFlop counts include the fol-
lowing types of operations: linear transforms, matrix multi-
plications, einsum operations (used in relative position em-
beddings), and additions. We count a multiply-accumulate
as a single operation. In Eventful Transformers, we ad-
ditionally count operations required for updating the gate
(additions and subtractions) and the extra additions in the
sparse attention-value update. We only report operations in
the Transformer backbones (e.g., we do not count anything
in the object detection head).

D. Result Tables
In this section, we provide tables of results for experi-

ments in the main paper. Table C corresponds to Figures 7
and 8, and Table D corresponds to Figure 9. Table E shows
spatial redundancy results for the 672-resolution ViTDet
model (the 1024-resolution results are in Table 1).
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Table C. Video object detection results. Results for video object
detection on VID using the ViTDet model. This table corresponds
to Figures 7 and 8 in the main paper.

Size Variant r mAP50 (%) GFlops

1024 Base model – 82.93 467.4
1024 Our method 2048 82.94 294.9
1024 Our method 1536 82.79 225.9
1024 Our method 1024 82.00 156.8
1024 Our method 768 81.25 122.3
1024 Our method 512 79.38 87.8
1024 Our method 256 73.29 53.3
1024 Token-wise only 2048 82.97 294.1
1024 Token-wise only 1536 82.93 250.7
1024 Token-wise only 1024 82.58 207.3
1024 Token-wise only 768 82.08 185.7
1024 Token-wise only 512 81.11 164.0
1024 Token-wise only 256 76.60 142.3
1024 STGT 2048 82.92 294.1
1024 STGT 1536 82.60 250.7
1024 STGT 1024 81.25 207.3
1024 STGT 768 79.81 185.7
1024 STGT 512 76.70 164.0
1024 STGT 256 68.73 142.3

672 Base model – 82.28 174.5
672 Our method 1024 82.23 115.1
672 Our method 768 82.21 87.9
672 Our method 512 81.84 60.7
672 Our method 384 81.43 47.1
672 Our method 256 80.16 33.5
672 Our method 128 75.19 19.9
672 Token-wise only 1024 82.28 111.9
672 Token-wise only 768 82.25 90.2
672 Token-wise only 512 82.01 68.5
672 Token-wise only 384 81.64 57.7
672 Token-wise only 256 80.76 46.8
672 Token-wise only 128 76.96 36.0
672 STGT 1024 82.28 111.9
672 STGT 768 81.95 90.2
672 STGT 512 80.45 68.5
672 STGT 384 78.71 57.7
672 STGT 256 75.57 46.8
672 STGT 128 68.13 36.0

Table D. Video action recognition results. Results for video ac-
tion recognition on EPIC-Kitchens using the ViViT model. This
table corresponds to Figure 9 in the main paper.

Variant Tuned r Tested r Accuracy (%) TFlops

Base model – – 67.14 7.12
Temporal 200 280 66.77 5.49
Temporal 200 240 66.53 4.77
Temporal 200 200 66.02 4.05
Temporal 200 160 64.72 3.33
Temporal 200 120 62.23 2.62
Temporal 100 140 65.52 2.98
Temporal 100 120 64.51 2.62
Temporal 100 100 62.91 2.26
Temporal 100 80 60.76 1.90
Temporal 100 60 59.13 1.54
Temporal 50 70 61.27 1.72
Temporal 50 60 60.60 1.54
Temporal 50 50 59.91 1.36
Temporal 50 40 58.90 1.18
Temporal 50 30 58.05 1.00

Table E. Adding spatial redundancy to 672-resolution ViTDet.
Results for adding spatial redundancy to the 672-resolution ViT-
Det model. 1024-resolution results are in the main paper.

Variant r mAP50 (%) GFlops

Base model – 82.28 174.5
Spatial – 79.86 159.7
Spatiotemporal 1024 79.85 98.2
Spatiotemporal 768 79.81 75.5
Spatiotemporal 512 79.47 52.8
Spatiotemporal 384 79.02 41.4
Spatiotemporal 256 77.90 29.8
Spatiotemporal 128 73.40 18.0


