
HyperDiffusion: Generating Implicit Neural Fields with Weight-Space Diffusion
- Supplementary Document -

Ziya Erkoç1 Fangchang Ma2 Qi Shan2 Matthias Nießner1 Angela Dai1

1Technical University of Munich 2Apple

Appendix
In the supplementary document, we present additional

3D and 4D shape results (Section 1) and explain the imple-
mentation methods and parameters in detail (Section 2).

1. Additional Qualitative Results
We provide additional unconditional generation results

on 3D and 4D generation in Figure 2 and Figure 1. We can
generate diverse sets of shapes in both 3D and 4D settings.
Resulting meshes are clean, smooth, and can be readily used
in any 3D design software and game engines. Although
we can output 16 frames for animation sequences, we only
show 3 frames in Figure 1. Full animation sequences are
available in our website.

2. Implementation Details
We use the diffusion and transformer architecture imple-

mentations of [2], which are modified versions of OpenAI
and minGPT implementations, respectively. We have a pre-
determined MLP structure which consists of 3 hidden lay-
ers, each with 128 neurons. To process the MLPs with a
transformer architecture, we first flatten the MLP weights
into a 1D vector. Additionally, as a way to establish corre-
spondence between components within the 1D vector and
the MLP layers (e.g., first n values are weights of the first
layer), each layer is considered as two tokens, one for its
weights and the other for its biases. Hence, in total we
have 8 tokens coming from weights and biases. Thanks to
this decomposition, transformer may figure out interaction
between weights and biases across different layers during
training. We also have one additional token representing the
sinusoidal embedding of the timestep value. During synthe-
sis of new samples, we again decompose the generated 1D
vector into each layer’s weights and biases, and load them
into the same MLP structure.

Our transformer has 2880 hidden size (i.e., the size of
each token after linear projection), 12 layers, and 16 self-
attention heads. We use 500 diffusion timesteps in our

implementation and a linear noise scheduler ranging be-
tween 1e−4 and 2e−2. For the sampling strategy, we used
DDIM [3] and do not skip any timesteps during sampling.
In addition, our denoising network directly predicts the de-
noised version, following [2]. We observe that ≈ 15% of
airplane, ≈ 16% of chair and ≈ 51% of car shapes in our
train split of ShapeNet [1] contain major self-intersections
in their original shape mesh faces, and so we exclude them
from the training set for both our approach as well as for all
baselines.

We also apply de-duplication to generated 3D shape
results. Note that this has not been applied to baseline
approaches, since their quantitative performance degraded
with de-duplication. We achieve de-duplication by sam-
pling twice the necessary amount and removing the ones
that are very close to each other.

Figure 1: Additional unconditional 4D animation sequence
generation results. We refer to our website for animated
shape results.



Figure 2: Additional unconditional 3D shape generation re-
sults.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 1

[2] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A
Efros, and Jitendra Malik. Learning to learn with genera-
tive models of neural network checkpoints. arXiv preprint
arXiv:2209.12892, 2022. 1

[3] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020. 1


