
Supplementary Materials for:
Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR

based 3D Object Detection

1. Overview

We first present the outline of this supplementary ma-
terial. §2 contains the detailed network and input designs.
The human labeling protocol is presented in §3. The de-
tails of bidirectional tracking are in §4. §5 offers detailed
detection performance on the WOD test split and detailed
tracking performance. §6 elaborates our training and infer-
ence scheme. We conduct runtime evaluation in §7, where
we compare CTRL with previous art 3DAL. §8 shows the
statistics of life cycles of totally missed objects. §9 and
§10 showcase some typical examples of incorrect official
annotations and the sampled hard cases for relabeling. We
present the detailed algorithm of Track Coherence Opti-
mization in §11.

2. Detailed Network Structure

Input. After tracking, for every track, we first use its con-
taining proposals to crop points. Each proposal is expanded
by 2 meters in three size dimensions (1 meter on each side).
The expanded proposals are used to crop raw points in the
corresponding frame. In case of the out-of-memory issue
caused by too many points of large objects, we randomly
downsample all points in a proposal to 1024 points. Instead,
the track length is not limited. The downsampled points
are transformed into the pose of the first frame of the track
and concatenated together. We just place the points in their
transformed positions without any further movement (e.g.,
centralizing) or editing. We treat the concatenated points in
a track as a sample in a mini-batch.

Track Feature Extraction. We use the Sparse UNet in
FSD [5] as the backbone to extract the track features (i.e.,
point-wise features extracted from a full track). The net-
work hyperparameter is the same as the one in FSD, which
can be accessed through their official website, we also pro-
vide our detailed configuration in the attached file with
MMDetection3D format.

Object Feature Extraction. As for the object feature ex-
traction, we first use the proposal to crop points from all the
concatenated track points, and further extract the features
of cropped points. In particular, we adopt PointNet imple-
mentation in FSD to extract point features, which is more
efficient than the original implementation. We use 6 consec-
utive PointNets to extract the point features, and eventually,
the point features of each object are aggregated by a max
pooling operator. We also provide the configuration in our
attached code with detailed comments. Since the cropped
points are from different time steps, we append a binary
flag to the cropped points to distinguish whether a certain
point comes from the current frame. “Current frame” here
refers to the frame to which the proposal belongs.

3. Human Labeling Protocol

In the main paper, we conduct a human labeling study.
Here we present the detailed human labeling protocol.

Data selection. We randomly select 1000 “hard vehicles”
to relabel. To this end, we first calculate the maximum IoU
between each GT and all predictions in the same frame.
Then we randomly sample 1000 GTs with 3D IoU lower
than 0.7 and higher than 0.1 as “hard vehicles”. For each
selected GT, we give all the point clouds throughout its life
cycle to annotators.

Labeling. We ask experienced annotators to do the job
with professional labeling tools. They carefully label the
object poses in three perspective views. Given the multi-
frame point clouds, they could play the clip or concatenate
them to utilize the temporal information. Although we pro-
vide point cloud sequences to annotators, they only need to
label the frame containing the aforementioned “hard vehi-
cles”. Thus 1000 GTs could sufficiently cover hard cases
with high diversity.

https://github.com/tusen-ai/SST/blob/main/configs/fsd/fsd_waymoD1_1x.py

4. Details of Bidirectional Tracking
Forward Tracking. We adopt the official codebase of
ImmortalTracker to implement the forward tracking. We
make some small modifications to its default setting. (1)
We do not use the default score threshold to remove low-
confidence predictions because we find it harmful to detec-
tion performance. (2) We do not use the additional NMS
since our base detector has adopted a strict NMS (IoU =
0.2). Other key settings remain unchanged. For example,
following ImmortalTracker, we adopt 3D IoU to measure
the object matching cost and a bipartite matching algorithm
for object association. During the forward tracking, we will
fill in the missing predictions by a motion model which is
maintained by a Kalman Filter. All tracks longer than 100
frames are extended into the end of the sequence by the mo-
tion model. Other tracks are extended 20 frames longer into
the future.

Backtracing. After forward tracking, we backtrace each
track from its last frame to its first frame to estimate the mo-
tion states. Then we backward extend the track into the past
using the motion states. Similar to the forward process, all
tracks longer than 100 frames are extended into the begin-
ning of the sequence by the motion model. Other shorter
tracks are extended 20 frames longer into the past.

5. Detailed Performance
Tracking results. Table 1 and Table 2 show the tracking
performance of CTRL in Waymo Open Dataset validation
and test split, respectively.

Detection performance on test split. Table 3 showcases
our detailed detection performance in the WOD test split.

6. Training and Inference Scheme
Training data. For the track-centric learning module, we
first generate all tracks in an offline manner. In the whole
training set, we obtain 349k vehicle tracks, 293k pedes-
trian tracks, and 40k cyclist tracks in total. Since the cy-
clist tracks are much less than the other two categories, we
repeat the cyclist tracks by 10×.

Data augmentations. We regard an input track as a scene
of the traditional detectors, so we directly adopt the default
data augmentations in these detectors, including global ro-
tation/flip/scaling/translation. In particular, an input track
is randomly rotated by [−0.78,+0.78], and flipped in two
axes with probability 0.5, and randomly scaled by a fac-
tor in [0.95, 1.05], and randomly translated in the vertical
direction by at most 0.2 meters. In addition, we add ran-
dom jittering to each input proposal. Their centers are ran-

0 50 100 150 200
Life cycle (frames)

0

200

400

600

800

1000

N
um

be
ro

ft
ra
ck

s GT tracks
Inferior tracks

1

Figure 1: The life cycle histogram of normal GT tracks and
inferior tracks. The frame frequency is 10Hz.

domly translated by [0.2l, 0.2w, 0.1h], where l, w, h stand
for length, width, and height, respectively. Their widths
and lengths are randomly scaled by a factor in [0.8, 1.2].
The heights are randomly scaled by a factor in [0.9, 1.1].
And their headings are disturbed with a maximum noise of
0.2 rad.

Schedule and optimization. We train the model for 24
epochs with a one-cycle schedule. AdamW [7] is adopted
as the optimizer and the maximum learning rate is 1e-3. The
model is trained on 8 RTX 3090 GPUs, with 16 samples
(tracks) on each of them. The whole training takes around
20 hours.

Inference. We adopt so-called batch inference for effi-
ciency. 32 tracks are simultaneously refined in a single for-
ward pass, which offers us high efficiency as we demon-
strate in §7.

Track TTA. In the main paper, we adopt conventional
double-flip augmentation for the Track TTA. Specifically,
a whole input track is first horizontally (x-axis) flipped, re-
sulting in two tracks. The two tracks are then vertically
(y-axis) flipped, resulting in four tracks in total. In addition
to the double-flip augmentation, we also try different rota-
tions for TTA. In particular, we adopt [−2π/3, 0,+2π/3] as
the rotation angles, leading to a similar performance to the
double-flip strategy. Combining double-flip augmentation
and rotation further leads to around 0.1 mAP improvement.
Note that we do not adopt TTA for the base detector.

7. Runtime Evaluation
Although CTRL is for offline use, resource efficiency is

also crucial in production. Thus we perform a simple run-
time evaluation on the previous offline method and ours,
shown in Table 4. CTRL is around 20× faster than 3DAL
since CTRL utilizes efficient FSD as the base detector and
does not adopt TTA in the base detector.

https://github.com/ImmortalTracker/ImmortalTracker
https://github.com/ImmortalTracker/ImmortalTracker/blob/main/configs/waymo_configs/immortal.yaml

Vehicle Pedestrian Cyclist
MOTA↑ MOTP↓ IDS(%)↓ MOTA↑ MOTP↓ IDS(%)↓ MOTA↑ MOTP↓ IDS(%)↓

AB3DMOT* [11] 55.7 16.8 0.40 52.2 31.0 2.74 – – –
CenterPoint* [13] 55.1 16.9 0.26 54.9 31.4 1.13 – – –
SimpleTrack* [9] 56.1 16.8 0.08 57.8 31.3 0.42 – – –
CenterPoint++ [13] 56.1 - 0.25 57.4 – 0.94 – – –
Immortal Tracker [10] 56.4 - 0.01 58.2 – 0.26 – – –

CTRL (Ours) 71.2 15.1 0.0078 70.3 29.3 0.073 72.5 24.8 0.11

Table 1: Tracking results on WOD validation split (L2). *:from [9].

Vehicle Pedestrian Cyclist
MOTA↑ MOTP↓ IDS(%)↓ MOTA↑ MOTP↓ IDS(%)↓ MOTA↑ MOTP↓ IDS(%)↓

InceptioLidar 65.58 15.70 0.14 64.52 29.54 0.20 65.12 25.42 0.52
HorizonMOT3D 64.07 15.77 0.19 64.15 30.67 0.50 62.13 25.45 0.18
MFMS Track 63.14 15.65 0.07 63.85 30.19 0.28 62.83 25.44 0.69
CasTrack 63.66 15.79 0.05 64.79 30.24 0.24 59.34 25.30 0.09
ImmortalTracker [10] 60.55 16.22 0.01 60.60 31.20 0.18 61.61 27.41 0.10

CTRL (Ours) 74.29 14.26 0.02 74.21 28.95 0.05 71.37 25.18 0.07

Table 2: Comparison with state-of-the-art online tracker on WOD test leaderboard (L2).

Detection Tracking Refine Total

3DAL 900s 3s 25s 928s
CTRL 36s 4s 6s 46s

Table 4: Time cost of processing a 20s sequence.

8. Short-life Failure Cases

In the main paper, we have discussed the totally missed
objects by CTRL. One of their characteristics is that they are
likely to belong to short-life tracks. We briefly present the
statistics in the main paper. Here we depict the life cycle
histogram of inferior tracks. The inferior tracks refer to
the GT tracks containing more than 10% missed objects.
Figure 1 shows the life cycle distribution of all GT tracks
and the inferior tracks. As can be seen, the major part of
inferior tracks has very short life cycles, which are usually
shorter than 2.5 seconds.

9. Examples of Incorrect Annotations

In the §5.4 of the main paper, we calculate BEV IoU
instead of the 3D IoU because we find there are some in-
correct annotations in the official WOD ground-truth boxes.
Figure 2 shows some typical cases.

10. Examples of Hard Cases
In the §5.4 of the main paper, we randomly sample some

hard cases to relabel. Figure 4 qualitatively shows these
cases.

11. Details of Track Coherence Optimization
(TCO)

Overall pipeline. The pipeline of TCO comprises four
steps: box size alignment, object shape extraction, multi-
way registration, and pose quality evaluation.

Box size alignment. The first step of TCO is to specify
a frame in a track as base frame. For quasi-rigid objects,
we assume their 3D sizes keep unchanged throughout the
whole track. So we first align all sizes in the track to the
box size in the base frame.

Object shape extraction. Afterwards, we need to extract
object shapes from the complete scenes for further registra-
tion. To this end, we first expand all proposals by 1 meter
only in the height dimension, which potentially keeps more
foreground points without increasing too much background
clutter. Then we use the expanded boxes to crop points in
their corresponding time steps. We use the term “object
shape” to denote the cropped point clouds. In a track, only
frames containing more than 60 cropped points will be used
for further processing. These cropped points (shapes) are
then transformed into their canonical box coordinate.

Methods mAPH
L2

Vehicle 3D AP/APH Pedestrian 3D AP/APH Cyclist 3D AP/APH
L1 L2 L1 L2 L1 L2

CTRL (Ours) 82.52 90.08/89.17 84.41/83.51 90.17/87.13 85.64/82.61 84.06/83.23 82.27/81.44
HRI ADLAB HZ 81.32 86.77/86.40 80.19/79.83 88.59/86.01 83.84/81.27 85.67/84.84 83.69/82.87
LoGoNet Ens 81.02 88.33/87.87 82.17/81.72 88.98/85.96 84.27/81.28 83.10/82.16 80.98/80.06
MT-Net v2 [2] 80.00 87.54/87.12 81.20/80.79 87.62/84.89 82.33/79.66 82.80/81.74 80.58/79.54
BEVFusion-TTA [6] 79.97 87.96/87.58 81.29/80.92 87.64/85.04 82.19/79.65 82.53/81.67 80.17/79.33
LidarMultiNet-TTA [12] 79.94 87.64/87.26 80.73/80.36 87.75/85.07 82.48/79.86 82.77/81.84 80.50/79.59
MPPNetEns [3] 79.60 87.77/87.37 81.33/80.93 87.92/85.15 82.86/80.14 80.74/79.90 78.54/77.73

Table 3: Top-performing detectors in the leaderboard of Waymo Open Dataset. The results are up to March 8th.

(a) Too low height (b) Containing ground points

(c) Short in length (d) Excess in height

Figure 2: Typical examples of incorrect official Waymo annotations. The red boxes are ground-truth boxes and the green
boxes are predictions. We use dashed circles to indicate the incorrect parts. For those incorrectly annotated objects, our pre-
dictions are actually more reasonable. For reference, the four examples are from scenes with timestamps 1507130389559851,
1507165348439487, 1507217534286345, 1507310198254864, respectively.

Multi-way registration. For the next shape registration
part, we adopt a multi-way registration [4] with pose graph
optimization. To reduce overhead, we design a sparse pose
graph instead of the conventional dense pose graph. The
sparse pose graph has two key elements: nodes and sparse
edges. A node is the point cloud (i.e., shape) Pi associ-
ated with a transformation matrix Mi which transforms Pi

into the base object shape Pbase. For each frame, we only
connect it with the previous k frames and the succeeding
k frames to construct edges, resulting in 2k edges. So the
constructed pose graph is sparse. In practice, k larger than

5 could achieve good performance, and we let k = 10 in
our experiments. For each edge, we have a transformation
matrix Ti,j aligning shape Pi to shape Pj . We use point-to-
point ICP [1] to estimate the all mentioned transformations.
We optimize M = {Mi} via:

min
M

∑
i,j

∑
(p,q)∈Kij

∥Mip−Mjq∥22. (1)

In Equation 1, Kij is the set of point pairs between Pi and
Pj , and their pair relations are obtained by matching points
in Ti,jPi and points in Pj with a nearest-neighbor manner.

GT

Pred. w/o.
TCO

Pred. w/.
TCO

(a) (b) (c) (d)

Figure 3: Qualitative results of track coherence optimization (TCO). We reconstruct object shapes by aligning the poses
of boxes and concatenating object points from multiple frames. After TCO, the reconstructed shapes are much more clear,
even better than the ones reconstructed by GT object poses.

(a) (b)

(c) (d)

Figure 4: Typical examples of our relabeled hard cases. The red boxes are ground-truth boxes and green boxes are
predictions. They usually contain a few points or have partial shapes.

The maximum correspondence distance of each pair is 2
meters.

Pose quality evaluation. To avoid the failure of ICP, we
employ Chamfer Distance (CD) [8] to evaluate the quality
of the optimized pose for each frame. For object shape Pi,

we use CD to measure its distance to Pj :

CDij =
1

|Pi|
∑
x∈Pi

min
y∈Pj

∥x−y∥2+
1

|Pj |
∑
y∈Pj

min
x∈Pi

∥y−x∥2.

(2)
For object shape Pi in a track, we define its pose quality

as1:
Qi =

CDi,i−1 + CDi,i+1

2
. (3)

Then we define
∆Qi = Qi −Q′

i. (4)

where Q′
i is pose quality after TCO. If ∆Qi is positive, it

means that the optimized pose becomes better. Thus, only
optimized poses with a positive ∆Qi are retained, and other
poses are not utilized.

Then we assume the optimal solution of Equation 1 is
M∗ = {M∗

i }. To get better bounding box parameters, we
simply use the inverse transformation of M∗

i to adjust the
initial pose of box Bi. We show the qualitative results of
TCO in Figure 3.

1The Chamfer Distance here is calculated between two shapes aligned
by their poses. We omit the transformation for simplicity

References
[1] Paul J Besl and Neil D McKay. Method for Registration of

3-D Shapes. In Sensor fusion IV: control paradigms and data
structures. Spie, 1992. 4

[2] Shaoxiang Chen, Zequn Jie, Xiaolin Wei, and Lin Ma. MT-
Net Submission to the Waymo 3D Detection Leaderboard.
arXiv preprint arXiv:2207.04781, 2022. 4

[3] Xuesong Chen, Shaoshuai Shi, Benjin Zhu, Ka Chun Che-
ung, Hang Xu, and Hongsheng Li. MPPNet: Multi-Frame
Feature Intertwining with Proxy Points for 3D Temporal Ob-
ject Detection. In ECCV. Springer, 2022. 4

[4] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust
Reconstruction of Indoor Scenes. In CVPR, 2015. 4

[5] Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Fully Sparse 3D Object Detection. In NeurIPS, 2022. 1

[6] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela Rus, and Song Han. BEVFusion: Multi-
Task Multi-Sensor Fusion with Unified Bird’s-Eye View
Representation. arXiv preprint arXiv:2205.13542, 2022. 4

[7] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[8] Ziqi Pang, Zhichao Li, and Naiyan Wang. Model-free Vehi-
cle Tracking and State Estimation in Point Cloud Sequences.
In IROS. IEEE, 2021. 5

[9] Ziqi Pang, Zhichao Li, and Naiyan Wang. Simpletrack: Un-
derstanding and Rethinking 3d Multi-object Tracking. In
ECCVW. Springer, 2023. 3

[10] Qitai Wang, Yuntao Chen, Ziqi Pang, Naiyan Wang, and
Zhaoxiang Zhang. Immortal Tracker: Tracklet Never Dies.
arXiv preprint arXiv:2111.13672, 2021. 3

[11] Xinshuo Weng and Kris Kitani. A Baseline for 3D Multi-
object Tracking. arXiv preprint arXiv:1907.03961, 2019. 3

[12] Dongqiangzi Ye, Weijia Chen, Zixiang Zhou, Yufei Xie, Yu
Wang, Panqu Wang, and Hassan Foroosh. LidarMutliNet:
Unifying LiDAR Semantic Segmentation, 3D Object Detec-
tion, and Panoptic Segmentation in a Single Multi-task Net-
work. arXiv preprint arXiv:2206.11428, 2022. 4

[13] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-
based 3D Object Detection and Tracking. arXiv preprint
arXiv:2006.11275, 2020. 3

