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In this supplementary, we provide additional illustration
of our proposed method and proofs to support theoretical
analysis, as well as dataset and implementation details. Ex-
tended experiments and analysis are performed to further
verify the effectiveness and robustness of our method.

1. Overall Traininig Procedure
We summarize the workflow of our proposed method in

Algorithm 1. The referred equation can be found in the
main text.

2. Details for Theoretical Analysis
2.1. Joint Characterization of Feature and Output

Space

Here, we prove that in our gradient-based method, in-
formation in feature space and model-output space can be
jointly modeled implicitly, which demonstrates the superi-
ority of our method as a unified framework that jointly char-
acterizes the feature and output space as well as the learning
dynamics. We illustrate this property under cross-entropy
loss and Dice loss.

Specifically, for the task-specific prediction layer, which
is implemented as a convolutional layer with 1 × 1 kernel,
its function can be mathematically expressed as:

u = W>z + b, (1)

where z ∈ RB×m×h×w denotes the input feature maps with
batch size B, channel number m, and spatial size h × w.
W ∈ Rm×c is the convolutional kernel matrix with input
channel m and output channel c. b ∈ Rc indicates the bias
tensor. u ∈ RB×c×h×w is the logit predictions.

We first consider the gradients for network parameter θ
by backpropagating the cross entropy (CE) loss LCE :

min
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Algorithm 1: Training Procedure for Optimization
Trajectory Distillation

Input: Source dataset Ds, target dataset Dt, number of
iterations I

Output: Optimized model parameters θ
1 Init: Gradient memory buffer Gs,GA,GIt

2 for i← 1 to I do
3 {(xs,ys)} ← Image-label pairs sampled from(Ds)
4 {(xut )}, {(xlt,ylt)} ← Sample from(Dt)
5 Generate online pseudo-label ỹut
6 {(xt,yt)} ← {(xut , ỹut ), (xlt,ylt)}
7 Backpropagate gradients gs, gt, gA, gN by Eq.(2)
8 Cross-domain/class distillation:
9 Update Gs and GA with gs and gA

10 if Gs andGA are full then
11 Apply SVD to identify the principal subspace and

form the corresponding projection matrix
Ms,MA by Eq.(5)(6)

12 Clear Gs and GA

13 end
14 Perform gradient projection by Eq.(7)
15 Compute the overall training objective L by Eq.(8)
16 Temporal self-distillation:
17 Update GIt with gIt
18 if GIt is full then
19 Form the projection matrix MIt by Eq.(5)(6)
20 Clear GIt

21 end
22 Compute the mini-batch gradients g̃ ← ∇θL(θ)
23 Update model parameters θ by Eq.(11)
24 end
25 return θ

where p = B × h × w is the total number of pixels,
y ∈ RB×c×h×w is the one-hot pixel-wise class label. Since
our focus is on feature space z and output space u, without
loss of generality, we set y to follow the uniform class dis-
tribution that y = [1/c, 1/c, ..., 1/c]. Then, for each pixel,



the derivative of the CE loss can be formulated as:
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Then we summarize the gradient magnitudes over all pixels
and channels:
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The result indicates that the gradients of CE loss character-
ize the information in both feature space and output space.

Similarly, for Dice loss LDice:

min
θ∼[W , b]
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Here we omit the details of softmax layer and use act to de-
note the activation function for simplicity. When c is large,
the pixel-wise derivative can be approximated by:
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where ξ is a constant term. Its gradient magnitudes can be
written as:
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which proves that the proposition also holds true for Dice
loss.

2.2. Impacts on Generalization Error

In this section, we prove the effectiveness of our method
towards a tighter generalization error bound on the target
domain and novel classes.

Firstly, we analyze the underlying mechanism for the
cross-domain distillation module. Let H be a hypothesis
space of VC-dimension d, for h ∈ H, the correlations be-
tween the error on the target domain and the distance in
gradient space across domains are established as [1, 8]:
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with probability at least 1 − δ. Here εT and ε̂S repre-
sent the true and empirically estimated error of the target
and source domain, respectively. Div∇(ŨS , ŨT ) is the dis-
tance between data distributions ŨS and ŨT in gradient
space. nl and nu denote the number of labeled and unla-
beled samples. Λ, δ, and e are constants. It implies that
constraining the gradient descent trajectory of the target do-
main to approximate the source domain’s, which reduces
Div∇(ŨS , ŨT ), could lead to lower cross-domain general-
ization error.

Furthermore, we demonstrate that the cross-class distil-
lation module contributes to lower empirical error on novel
classes from the multi-task learning perspective. Suppose
that L is the empirical training loss and ∇θLq(θ) denotes
its derivative w.r.t. class q. Given a set of anchor classes
{ai}Ai=1 and a novel class q, with the first-order Taylor ex-
pansion, we have:

Lq(θ−µ ·∆θ∗) = Lq(θ)−µ ·∇θLq(θ) ·∆θ∗+O(µ), (9)

where the optimization step ∆θ∗ is characterized by∑A
i=1∇θLai(θ) +∇θLq(θ), µ is a small value. Then:

Lq(θ − µ·∆θ∗)− Lq(θ) = −µ ·
{
‖∇θLq(θ)‖2

+

A∑
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[
∇θLq(θ) · ∇θLai(θ)

]}
+O(µ).

(10)

It indicates that by enforcing the similarity between the gra-
dients w.r.t. novel and anchor classes, we could drive the
model to reduce the empirical loss on novel classes along
optimization and thereby attain a well-generalizable solu-
tion.



3. Implementation Details
3.1. Nuclei Segmentation and Recognition

3.1.1 Datasets and Preprocessing

Accurate detection, segmentation, and classification of nu-
clei serve as essential prerequisites for various clinical and
research studies within the digital pathology field [11]. In-
consistent taxonomy for nuclei categorization is common
across different institutes, which results in the unmatched
label sets among datasets. In this regard, we use PanNuke
[6] and Lizard [10] as the source and target dataset, respec-
tively. PanNuke contains 481 visual fields cropped from
whole-slide images along with 189,744 annotated nuclei. It
follows a categorization schema where nuclei are divided
into five classes, including neoplastic, non-neoplastic ep-
ithelial, inflammatory, connective, and dead cells. We dis-
card the “dead” class as it does not exist in most image
patches. To ensure the dataset has a uniform data distribu-
tion, we use all images from the breast tissue to formulate
the source dataset. Lizard consists of 291 image regions
with an average size of 1016×917 pixels from the colon tis-
sue and annotates 495,179 nuclei. It adopts a categorization
schema different to PanNuke that there are six classes in to-
tal, i.e., neutrophil, eosinophil, plasma, lymphocyte, epithe-
lial, and connective cells. We use the Dpath subset as the
target dataset. For preprocessing, all the visual fields with
divergent size are randomly cropped into image patches of
128×128 pixels. CutMix [27] is used to augment the target
dataset.

3.1.2 Network Architectures and Parameter Settings

We employ the widely used Hover-Net [11] architecture
with a standard ResNet-50 backbone as the base model.
The optimizer is Adam with a learning rate of 1e − 4 and
(β1, β2) = (0.9, 0.999), and the batch size is set as 4. To
supervise the classification and segmentation branches, we
adopt a combined loss of CrossEntropyLoss + DiceLoss.
λ in Eq.(8) and κ in Eq.(11) are empirically set to 1000 and
10, respectively.

3.1.3 Evaluation Metrics

F1 score is a popular metric to evaluate classification perfor-
mance. It measures both precision and recall harmonically.
We report the class-averaged score to indicate the overall
accuracy. Panoptic quality (PQ) [11] is a unified metric for
the instance segmentation task which models the quality of
both detection and segmentation results concurrently:

PQ =
TP

TP + 1
2FP + 1

2FN︸ ︷︷ ︸
Detection Quality

·
∑

(y,ŷ)∈TP IoU(y, ŷ)

TP︸ ︷︷ ︸
Segmentation Quality

. (11)

where TP,FP,FN are the true positive, false positive, and
false negative detection predictions, respectively. (y, ŷ) rep-
resents the pair of ground truth and predicted segmentation
mask. IoU is the intersection over union score.

3.2. Cancer Tissue Phenotyping

3.2.1 Datasets and Preprocessing

Identifying distinct tissue phenotypes is an essential step
towards systematic profiling of the tumor microenviron-
ment in pathological examination [13]. Previous works are
mostly limited to the discrimination of two classes of tissue:
tumor and stroma [19], while recent studies argue that rec-
ognizing more heterogeneous tissues brings clinical value
[15]. We therefore propose to perform adaptation from a
dataset with only two categories of tissue to another dataset
with several novel classes. In particular, we select images
of tumor and stroma tissue from the CRC-TP [13] to form
the source dataset. CRC-TP contains 20 H&E-stained col-
orectal cancer (CRC) slides obtained from 20 different pa-
tients. Region-level tissue phenotype annotations are pro-
vided by expert pathologists. To ensure a unique category
label can be assigned to each image, patches are extracted
at 20×magnification with the size of 150×150 pixels. The
patch-wise tissue phenotypes are decided based on the ma-
jority of their content. Kather [15] is then regarded as the
target dataset. It consists of 5000 150 × 150 pathology
image patches sampled from 10 anonymized CRC tissue
slides. Other than tumor and stroma tissue, Kather includes
six novel tissue types, i.e., complex stroma, immune cells,
debris, normal mucosal glands, adipose tissue, background,
and thus poses an 8-class classification problem.

3.2.2 Network Architectures and Parameter Settings

For experiments, we employ ResNet-101 as the image en-
coder and thereupon add two classification heads on top
to perform 2-class and 8-class discrimination, respectively.
During training, cross-entropy loss and Adam optimizer
with learning rate 1e − 4 are used to optimize the model
with a batch size of 4. λ and κ are set to 10 and 100.

3.3. Skin Lesion Diagnosis

3.3.1 Datasets and Preprocessing

Automatic fine-grained skin lesion recognition remains a
global challenge in dermatology. By taking a step fur-
ther than the basic benign/malignant differentiation, iden-
tifying the specific subtypes of lesions demonstrates sig-
nificant diagnostic value [24]. We hereby assign a be-
nign/malignant discrimination dataset as the source do-
main, and a fine-grained multi-disease dataset as the tar-
get domain. HAM10000 is a dermatoscopic image dataset
collected from different populations and modalities [25].



Figure 1. Visual comparisons with other methods on the nuclei segmentation and recognition benchmark.

After preprocessing procedures including histogram cor-
rection, sample filtering, and center crop, 10015 der-
matoscopic images with lesions of seven diagnostic cat-
egories in total are provided. It contains four sub-
types of benign lesions (melanocytic nevi (NV), benign ker-
atinocytic lesions (BKL), dermatofibromas (DF), and vas-
cular lesions (VASC)) and three subtypes of malignant
ones (melanomas (MEL), basal cell carcinomas (BCC),
and actinic keratoses intraepithelial carcinomas (AKIEC)).
We use the face subset with only coarse two-class anno-
tations as the source domain and the lower extremity sub-
set with fine-grained seven-class annotations as the target
domain. All images are randomly cropped to the size of
160× 160 pixels before being forwarded to the network.

3.4. Overall Experiment Settings

For all experiments, we implement our method with Py-
torch and conduct training on a NVIDIA GeForce RTX
3090 GPU with 24GB of memory. Gradient backpropa-
gation is performed for each mini-batch using BackPACK
[4]. Following previous works in UDA [2], each dataset is
randomly split into 80%/20% as the training/test sets. For
novel classes in the target dataset, we sample few (5/10)
samples with corresponding labels to formulate the sup-
port set. The remaining target data is left unlabeled.
Data augmentation techniques such as rotation and horizon-
tal/vertical flip are employed during training. Please refer to
the source code for more details.

It is noted that although from the technical perspective,
skin lesion diagnosis is a multi-class classification problem
similar to cancer tissue phenotyping, they differ largely in
the task context. Specifically, skin lesion diagnosis is more

Figure 2. Qualitative visualizations of our proposed method on the
cancer tissue phenotyping and skin lesion diagnosis benchmark
with t-SNE plot. Varied colours of points indicate the samples of
different classes.

like an object recognition task where its decision is dom-
inated by the local attributes of lesions, while cancer tis-
sue phenotyping relies on the global structure of the whole
pathology images, instead of focusing on a salient object.

4. Additional Experiment Results
4.1. Visualization

We provide additional qualitative results on the three
benchmarks. The comparison results shown in Fig. 1
demonstrate the superiority of our method to detect each
nucleus and delineate its boundary, as well as differenti-
ating nuclei of various types with their detailed biological
features. The t-SNE visualization in Fig. 2 shows that our
method could discover the underlying embedding structures
of various classes even with very limited labeled data.

4.2. Results with More Annotations

In this section, we compare our method with previ-
ous state-of-the-art approaches for cross-domain adaptation



Table 1. Comparison results of our proposed method against other state-
of-the-art methods for nuclei segmentation and recognition with 30-shot
labeled target samples. The best and second-best results are highlighted in
bold and brown, respectively.

Methods
30-shot

mF1 mF1* mPQ mPQ*

Sup-only 43.780.56 36.730.34 21.830.54 21.270.38
Multi-task [23] 43.231.02 30.391.37 23.550.49 17.780.72

DANN [7] 41.701.41 28.251.63 22.380.57 15.990.80
CGDM [5] 43.820.98 34.360.91 24.920.34 20.480.26

LETR [20] 40.041.13 25.800.82 21.960.70 14.890.44
FT-CIDA [16] 40.590.87 32.950.54 22.370.58 19.340.30
STARTUP [21] 49.000.74 36.321.10 28.780.46 22.570.43

DDN [12] 48.240.79 36.770.85 27.900.61 22.640.28
TSA [18] 44.960.60 33.130.97 25.690.91 21.400.63
TACS [9] 47.550.81 37.381.55 28.470.83 23.181.04

Ours 51.690.48 41.630.65 29.420.55 25.340.67

Table 2. Comparison results of our proposed method against
other state-of-the-art methods on three diverse tasks.

Methods
Radiology Fundus OfficeHome

mF1 mF1* mF1 mF1* mF1 mF1*
Baseline 41.87 19.20 41.03 29.07 44.87 46.54

CIDA [33] 42.55 23.48 39.90 27.32 43.29 42.80
TACS [19] 46.36 22.13 44.84 32.68 42.25 47.71

Ours 49.23 26.54 46.26 37.71 50.08 54.67

when more labeled samples are available in the target do-
main. The results for nuclei segmentation and recognition
with 30 labeled target samples are shown in Table 1. The
overall improvements of our method under this setting are
consistent with previous experiment results. It validates the
effectiveness of our method under different levels of sup-
port.

4.3. Extended Experiments on Diverse Tasks

We further evaluate our method on two medical image
tasks beyond pathology analysis and one general visual
recognition task, where the medical image tasks include
pneumonia screening in radiology and diabetic retinopa-
thy grading in fundus photography. For radiology analy-
sis, we adopt covid-kaggle [22] and Chest-Montreal [3] for
TADA from normal/pneumonia coarse screening to fine-
grained pneumonia diagnosis. For fundus, DDR [17] and
APTOS19 [14] are used to construct a TADA setting with
two novel classes (grade level 3, 4). In these settings, dis-
tribution shifts exist across domains due to differences in
image acquisition protocols among multiple cohorts. For
general visual task, we adopt OfficeHome [26] and evalu-
ate on “Artist” and “Real-world” domains. Experiments are
conducted in 10-shot regime and the corresponding results
are presented in Table 2. Through comparison with SOTA
methods, the effectiveness and broader applicability of our

method are proved.

4.4. Extended Key Component Analysis

In Table 3, we demonstrate the effectiveness of our
method’s key components. It complements the ablation
study performed in the main text from a cumulative per-
spective. From the results, we observe that all the proposed
modules are beneficial for improving the cross-domain
adaptation performance. In particular, the employment of
the cross-class distillation module contributes to a signif-
icant performance gain for target-private classes. For in-
stance, it attains 3.48% and 2.18% improvements in terms
of mF1* and mPQ* under 10-shot scheme. It verifies the
effectiveness of our method to perform optimization trajec-
tory distillation across domains and classes towards strong
model generalization.

4.5. Extended Hyperparameter Sensitivity Analysis

We further analyze the choices of hyperparameters and
their impacts on model performance in Fig. 3. We vary the
values of K and T , which denote the volumes of mem-
ory bank employed in the cross-domain/class distillation
and historical self-distillation modules. The choice of τ
in Eq. (6) which coordinates the identification of princi-
ple subspace is also studied. The results indicate that the
choices of those hyperparameters do not have a significant
influence as long as they are set within reasonable intervals.
Compared with them, the choices of λ in Eq. (8) and κ in
Eq. (11) demonstrate more importance and are required to
be carefully decided.

4.6. Robustness to Support Sample Selection

To evaluate the robustness of our method against the ran-
domness during few-shot sample selection, we run the ex-
periments for 10 times with different sets of labeled samples



Table 3. Ablation study by evaluating the performance gain of adding each key com-
ponent. We start from the multi-task baseline [23] and add components cumulatively.
Experiments are conducted on the nuclei segmentation and recognition benchmark.

Methods
5-shot 10-shot

mF1 mF1* mPQ mPQ* mF1 mF1* mPQ mPQ*

Baseline 33.85 18.15 18.58 10.77 35.15 21.29 19.14 12.89
+cross-domain 36.56 21.41 20.09 12.41 38.94 23.78 21.93 13.95

+cross-class 36.40 22.84 20.15 13.30 40.52 27.26 22.78 16.13
+historical 37.38 24.90 19.71 13.17 40.06 28.80 22.10 17.31
+projection 40.26 27.14 21.78 14.96 43.88 31.43 24.81 19.35

Figure 3. Performance comparison between different choices of hyperparameters K, T and τ on the cancer tissue phenotyping benchmark
under 10-shot scheme.

Table 4. Comparisons of our proposed method against other state-of-the-art methods for nuclei segmentation
and recognition by averaging the results from 10 random selections of support sets in the target domain. The
best results are highlighted in bold.

Methods
5-shot 10-shot 30-shot

mF1 mF1* mPQ mPQ* mF1 mF1* mPQ mPQ* mF1 mF1* mPQ mPQ*

Multi-task [23] 30.04 16.17 16.51 9.20 33.58 20.73 18.45 12.40 39.52 28.16 22.21 17.25
CGDM [5] 33.30 19.88 19.08 12.46 37.63 26.69 20.61 15.21 42.53 35.11 23.96 20.82

STARTUP [21] 35.91 21.28 19.66 13.53 39.10 24.65 21.77 15.34 45.71 32.38 26.41 20.33
Ours 37.73 25.36 20.18 14.29 44.04 32.52 24.70 19.49 49.12 40.17 28.44 25.31

in the target domain. The averaged results are presented in
Table 4. It demonstrates that our method consistently out-
performs the competing approaches under diverse settings,
which indicates its strong robustness.
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