
Supplementary Material for “Unpaired Multi-domain Attribute Translation of
3D Facial Shapes with a Square and Symmetric Geometric Map”

1. Details for Geometric Mapping
We clip the frontal part (see Figure 1) of the original 3D

template on the FaceScape dataset [1], considering that the
variations of facial attributes (expression, age, and gender)
are manifest only in the frontal parts in current 3D scans.
The resulting resolution of the clipped face is 10, 857 ver-
tices. The size of the geometric map (Gmap) is designed to
be 128 × 128 × 3, being a trade-off of computational effi-
ciency and representation accuracy. The resolution for the
Gmap (128 × 128 = 16384) is also on par with the res-
olution of the clipped template, thereby being sufficient to
represent the details of 3D facial shapes.

In addition, the details of the Gmap are shown in Fig-
ure 2. It preserves the adjacency relationship of all vertices
on the original 3D mesh in a local least-square sense while
being square and symmetric. It also makes the mapping
from 3D mesh to 2D geometric map to be one-to-one for
each vertex, avoiding triangle flipping which is correlated
to interpolation errors. We can see there is seldom triangle
flipping even in the most difficult regions, i.e. inner mouth
and eye surroundings.

Figure 1. Illustration for the clipped template.

Sampling the locations between a 3D shape and its rep-
resentation on the 2D Gmap (on an image grid) involves bi-
directional mappings between the 3D shape V and its vertex
locations on the 2D image grid. The mappings are as fol-
lows (also refer to Figure 3).

• Forward mapping is computed by barycentric inter-

Figure 2. The visualized details of the geometric map. Please
zoom in to view the structures.

Figure 3. Sampling the locations between a 3D facial shape and its
representation on the Gmap.

polation. Suppose a pixel P = {x, y} on the image
grid lies inside a triangle ∆P1P2P3 indexed by i1i2i3
on the geometric map, then the shape coding Ix,y is

Ix,y = w1vi1 +w2vi2 +w3vi3(vi1 , vi2 , vi3 ∈ V), (1)

where

w1 = (
−−→
PP2 ×

−−→
PP3)/(

−−−→
P1P2 ×

−−−→
P1P3),

w2 = (
−−→
PP3 ×

−−→
PP1)/(

−−−→
P1P2 ×

−−−→
P1P3),

w3 = (
−−→
PP1 ×

−−→
PP2)/(

−−−→
P1P2 ×

−−−→
P1P3),

(2)

and × is the outer-product between two 2D vectors.



Index Type Kernel Stride Output Others Appended Loss
1 Input shape - - 3× 10857 - -
2 Geometric mapping - - 3× 128× 128 Mask Area set to 0 -
3 Label cat. - - 26× 128× 128 - -

4
Conv. 7× 7 1× 1 64× 128× 128 IN+ReLU -
Conv. 4× 4 2× 2 128× 64× 64 IN+ReLU -
Conv. 4× 4 2× 2 256× 32× 32 IN+ReLU -

5 Residual blocks ×6 - - 256× 32× 32 - -

6 DeConv. 4× 4 2× 2 128× 64× 64 IN+ReLU -
DeConv. 4× 4 2× 2 64× 128× 128 IN+ReLU -

7 Conv. 7× 7 1× 1 3× 128× 128 Mask Area set to 0 Symmetric loss
8 Bilinear grid sampling - - 3× 10857 Mask Cycle&Reconstruction loss

Table 1. The architecture of the generator network. The padding size of each layer is determined to be compatible with the input and output
feature sizes. “IN” denotes for instance normalization operation. “ReLU” denotes for rectified linear unit activation.

Index Type Kernel Stride Output Others Appended Loss
1 Input shape - - 3× 10857 - -
2 Geometric mapping - - 3× 128× 128 Mask Area set to 0 -

3

Conv. 4× 4 2× 2 64× 64× 64 LReLU -
Conv. 4× 4 2× 2 128× 32× 32 LReLU Conv. + Cat. + Adv. loss
Conv. 4× 4 2× 2 256× 16× 16 LReLU -
Conv. 4× 4 2× 2 512× 8× 8 LReLU Conv. + Cat. + Adv. loss
Conv. 4× 4 2× 2 1024× 4× 4 LReLU -
Conv. 4× 4 2× 2 2048× 2× 2 LReLU Conv. + Cat. + Adv. loss

4 Conv.&Output for class 2× 2 1× 1 23× 1× 1 - Classification loss

Table 2. The architecture of the discriminator network. The padding size of each layer is determined to be compatible with the input and
output feature sizes. “LReLU” denotes leaky ReLU activation. The Conv. operations listed in the appended loss denote convolutions to
feature size 1 by 3 × 3 kernels and 1 × 1 strides. The output features for the 3 pyramid layers are then flattened and concatenated to fed
into the adversarial loss.

• Backward mapping is computed by bilinear grid
sampling from the image grid to the geometric map.

2. Detailed Network Architecture
The detailed architectures for the generator and the dis-

criminator of the proposed adversarial learning framework
are elaborated in Table 1 and Table 2 for ease of reproduc-
tively, respectively. We will also release our code.

3. Additional Qualitative Results
We have mentioned in the main manuscript that our

method is also capable of translating gender and age. Fig-
ure 4 shows additional results for some authorized samples
in the test set of FaceScape [1]. In addition, the propose
method supports both continous (e.g. the expressions and

genders) and discrete attribute labels (e.g. the ages). We
also suggest that the fractional labels for expressions can
be acquired by linear interpolations on the output directly.
Figure 5 shows continous variations from neural to certain
expressions. Therefore, our proposed method is capable of
generating realistic shapes with different attributes given an
input 3D facial shape.
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Figure 4. Some additional results for gender and age translations.

Figure 5. Two examples for continous variations of the expressions.
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