
Supplementary Materials for Unsupervised Open-Vocabulary Object
Localization in Videos

1. Datasets and metrics
1.1. Datasets

We utilize Something-Something-v2 [3] to pre-train our
vision backbone and use ImageNet-1K [2] to fine-tune the
patch-based CLIP model. To train and evaluate video slots
learning and labeling, we opt for two datasets, ImageNet-
VID [7] and YouTube-VIS [8], which focus on video ob-
jects.

Something-Something-v2 is a vast video collection
showcasing individuals performing actions in specific en-
vironments. Something-Something-v2 contains around
169k training videos and 25k validation videos from 174
classes. Each video features both an action and object, and
merely considering appearance information would not suf-
fice. Thus, we employ the video files to pre-train our Video-
MAE, disregarding any annotations.

ImageNet-VID is a commonly used benchmark for video
object detection. The dataset comprises 3862 and 555 video
snippets in its training and validation sets, respectively. The
video streams are annotated on every frame at either 25 or
30 fps. Furthermore, it includes 30 object categories, which
are a subset of the categories in the ImageNet DET dataset.

YouTube-VIS is a large-scale video instance segmen-
tation dataset, including 2,883 high-resolution YouTube
videos with pixel-level annotations of object instances. The
videos are diverse in terms of scene complexity, motion, and
object categories, making it a challenging dataset for video
object tasks. Although initially designed for instance seg-
mentation, YouTube-VIS includes object bounding boxes,
making it compatible with video object detection. Specif-
ically, since the annotation of YouTube-VIS validation set
and test set is inaccessible, we make a customized train-val
split randomly.

1.2. Metrics

Detailed definition of type of slots (SO/PO/GO/BG)
The part-whole hierarchies has been a long-existing issue

in object-centric learning [4]. As for a visually complex ob-
ject, the localization has the chance to split it in multiple
slots. We categorize slots that overlap with objects as con-
taining a Single Object (SO), Part of an Object (PO) or a
Group of Objects (GO). We utilize intersection, area, and
union of the slots and objects to determine their relations
and help categorizing slots.

Formally, for each predicted bounding box bp derived
from one slot and all the ground truth bounding box bg , we
have the following rules to categorize this slot with respect
to two threshold parameters τ1 and τ2:

1. If the intersection over union (IoU) between the two
boxes are larger than τ1, we regard it as Single Object.
If there exists only one bg such that the intersection
over bg’s area is larger than τ2, we also regard it as
Single Object.

2. Else, if the intersection over bp’s area is larger than τ2,
we regard it as Part of an Object.

3. Else, if there exists multiple bg such that the intersec-
tion over each bg’s area is larger than τ2, we regard it
as Group of Objects.

4. Finally, if none of the above conditions hold, the slot
should be Back-Ground slot.

In practice, we set τ1 = 0.5 and τ2 = 0.5. Based on the
definition, we propose to use the proportion of each type
of slots as a metric to evaluate how well the object-centric
model can handle the part-whole problem.

2. Implementation details
2.1. Training of vision backbone

We conduct the experiments with 128 NVIDIA Tesla
T4 GPUs for pre-training of VideoMAE on Something-
Something V2 datasets. Specifically, we use ViT-Base as
our encoder and a four-layer transformer as our decoder.
The patch size is set to 16×16×1. The videos are sampled
to length of 16 and cropped to 224 × 224. The videos are
reconstructed given the 90% patches masked.



For optimizer, we utilize AdamW [6] with a base learn-
ing rate of 1.5e− 4. We pre-train the model for 800 epochs
with 40 warm-up epochs and cosine learning rate scheduler.
The total batch size is 512.

2.2. Training of video slot learning

We train the video slot learning module using the Adam
optimizer [5] with a learning rate of 3e−3, linear learning
rate warm-up of 5 000 optimization steps and an exponen-
tially decaying learning rate schedule. Further, we clip the
gradient norm at 1 in order to stabilize training. The exper-
iments on ImageNet-VID and YouTube-VIS are conducted
separately. We train the model on specific dataset for 300
epochs. The models were trained on 8 NVIDIA Tesla T4
GPUs with a local batch size of 10, where each sample con-
tains 8 frames. The number of slots is set to 15.

Training with variable resolution There are some spe-
cial designs to handle variable resolution in these datasets.
For the data, we first resize the short side of the video into
224 while keeping the aspect ratio. Then we resize its long
side to the nearest multiple of patch size to make it fit the
patchify operation in the ViT model. For different models
involved in the pipeline, we employ positional embedding
interpolation techniques in both vision backbone (Video-
MAE) and patch-based CLIP. As for the video slot grouping
module, slot attention is naturally feasible to handle vari-
able length tokens. We make similar positional embedding
interpolation in the slot decoder part. During training, we
random sample frames repeatedly from one video for each
batch to avoid the issue of batching variable length tokens.

2.3. The finetuning of patch-based CLIP

For patch-based CLIP, we finetune a pre-trained ViT-
B/16 CLIP model on ImageNet 1K dataset, which includes
1.28M images. For each image, we augment the training
with a random resized crop with scale between 0.9 and 1
and resize the cropped area to 224× 224, then a random
horizontal flip. The model is finetuned for 200 epochs on
32 NVIDIA Tesla T4 GPUs with a local batch size of 4096.
The optimizer is SGD, and the learning rate scheduler is
cosine annealing with initial learning rate of 1.

2.4. Inference pipeline

In this part, we give a detailed explanation of the full in-
ference pipeline. Given a video V ∈ RT×H×W×3 as input,
we explicitly divide it into three steps.

(1) Video Slot Extraction. We first patchify the video
and extract its spatiotemporal patch features with shape
RT×H′×W ′×D by the vision backbone, where T is number
of frames, H and W are the height and width of the video,
H ′ and W ′ are the height and width after patchify opera-
tion, D is the hidden dimension. Next, we feed the patch

features to the trained spatiotemporal grouping module to
get the patch-slot assignment α ∈ RK×T×H′×W ′

, where
K is the number of slots. The patch-slot assignment serves
as the preliminary localization.

(2) Slot Labeling. We feed the same video V to the
patch-based CLIP frame by frame to get the semantic patch
features with shape RT×H′×W ′×D. Next, the patch-slot as-
signment α is employed to aggregate the semantic patch
features into semantic slots features with shape RK×D by
average pooling. Then we use the semantic slots features
to match a set of text features with shape RQ×D extracted
from text prompts, where Q is the number of text prompts.
Next, we take the top probability as the semantic label of
the slot and get the named localization.

(3) Joint Optimization. Given the named localization
from last step, we further process them with the joint op-
timization. As described in the main paper, the joint opti-
mization is mainly responsible for excluding some slots of
not interests and merge some neighbor slots with the same
semantic label.

3. Qualitative results
3.1. Failure cases analysis

We visualize and discuss four typical failures or mistakes
by our model.

Localization failure This type of failure is mainly caused
by inaccurate segmentation of our models. In each samples
in Fig. 1, since some characteristic features of the object are
included in one slot that overlaps partially with the object,
e.g. the ear of the dog or the dorsal fin of the whale, our
model still recognizes their name, and that leads to inaccu-
rate localization but correct naming.

Objects of interestsInput Frame Labeled Localization Merged Objects 

Figure 1. Examples of localization failure.

Background removal mistakes Our model removes two
types of background slots in post-processing: the slots
named with common background labels and the slots re-
sembling neither target nor common background labels.
However, the pipeline may wrongly remove the object of
interest. For example, in Fig. 2, the car and the train are
over-segmented into several parts. Although our patch-
based CLIP can recognize the class of the patch, however,



the cosine similarity of such slots with the text vector may
be small. In such circumstances, those parts of the target
object may be removed, leading to incomplete objects after
merging.

Objects of interestsInput Frame Labeled Localization Merged Objects 

Figure 2. Examples of background removal mistakes.

Multiple instance failure Limited by the insensitivity of
CLIP model to quantity words, we cannot distinguish how
many objects (especially objects of the same type) in a slot.
The merging process tends to merge objects with the same
label into groups of objects. For example, in Fig. 3, bicy-
cles and antelopes are merged together respectively in each
sample due to the shared semantic meaning and close spa-
tial relationship across multiple instances.

Moreover, due to the resolution limit of slot attention
mechanism, our model cannot always segment adjacent
small objects. For example, the small airplanes are grouped
together by the slot attention in the last row of Fig. 3.

Objects of interestsInput Frame Labeled Localization Merged Objects 

Figure 3. Examples of multiple instance failure.

Naming mistake The patch-based CLIP may not be able
to recognize every slot. On one hand, the word may have
multiple meanings, in the first row Fig. 4, the group of peo-
ple is named as “cattle”, due to cattle also means “human
beings especially en masse”. On the other hand, the patch-
based CLIP may not be able to recognize the slot if the slot
is just a part of an object. In the second row Fig. 4, the hair
of cat is recognized as lion, which is also reasonable since
the hair may also come from a lion.

3.2. More qualitative examples

We show more qualitative examples on ImageNet-VID
and YouTube-VIS datasets in Figure 5 and Figure 6, respec-

Objects of interestsInput Frame Labeled Localization Merged Objects 

Figure 4. Examples of naming mistakes.

tively.

4. Prompt engineering
To fully utilize the language models, we do not directly

use the embedding of the words for classes in Youtube-VIS
or ImageNet-VID as the text features. But instead, we em-
bed each class name into the sentence with its form as “a
photo of a [CLASS]”. For common background labels, we
select the stuff classes of COCO-stuff [1]. Generally, stuff
classes correspond to amorphous background regions such
as grass and sky.

Some minor modifications are made to transfer the for-
mat of some classes names, e.g. from “wall-concrete” to
“concrete wall”. Interestingly, though we add the article
“a” in the text template, our model can still match to patches
with multiple objects. To some extent, this can further help
explain why our model doesn’t distinguish groups of same-
category instances together. We also tried adding some syn-
onyms of some classes, for example, “ape” for “monkey”,
and “impala” for “antelope”. However, the improvement of
synonyms is not significant and we report the results with-
out synonyms.



Figure 5. More qualitative examples on ImageNet-VID dataset. The four rows in each example correspond to the input frames, labeled
localization, objects of interests and merged objects.



Figure 6. More qualitative examples on YouTube-VIS dataset. The four rows in each example correspond to the input frames, labeled
localization, objects of interests and merged objects.



References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 1209–1218, 2018.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-scale Hierarchical Image
Database. In CVPR, 2009.

[3] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski,
Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin
Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The “Something Something” Video Database for Learn-
ing and Evaluating Visual Common Sense. In ICCV, 2017.

[4] Geoffrey Hinton. How to Represent Part-whole Hierarchies in
a Neural Network. Neural Computation, pages 1–40, 2022.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In ICLR, 2015.

[6] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[7] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. International journal of com-
puter vision, 115:211–252, 2015.

[8] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance seg-
mentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5188–5197, 2019.


