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A. Larger Batch Sizes on FFHQ

We provide the results of different batch sizes on the
FFHQ dataset. Since the label extraction algorithm[ 4] re-
quires non-repeating labels in a batch, the batch size cannot
exceed the number of categories. Therefore, the maximum
batch size of our experiment is 8 on FFHQ. Note that the
latent vector of StyleGAN2 has a relatively large number
of parameters to be optimized and the CMA-ES optimizer,
adopted by GGL, does not support large-scale optimization.
Thus, GGL is unable to operate when B > 2.

Table 1: PSNR mean of different methods for different
batch sizes on FFHQ.

Method Batch Size

1 2 4 8
1G [3] 19.07606 16.27659 13.87481 12.24488
GI[14] 17.35061 15.55461 13.42360 12.19926
GGL [9] 14.74791 13.35473 —_— E—

GIAS [6] 20.07786 16.95568 13.67158 12.49889
GIFD 21.13338  17.96191 14.34927 12.74023

As shown in Table 1, GIFD outperforms all previous
methods at every batch size we considered. During the label
extraction process, the error rate of inferred labels is rela-
tively high when B > 2, leading to degraded performance
of all methods because of losing the significant information
brought by the correct labels.

B. Inference Speed Comparison

GIAS [6], searching the latent and parameter space of
the generative model in turn, generally performs best among
the previous methods. A series of experiments have demon-
strated that our method achieves consistent improvement
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over GIAS. Besides, GIFD only searches the feature do-
main, whose optimized parameters are far less compared
with the generator’s parameters. And GIAS requires a spe-
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Figure 1: The cost function over time of GIAS and GIFD
with B = 4. We give 4 trials and calculate the average
values. For a fair comparison, both methods execute a total
of 8000 iterations.

cific generator to be trained for each reconstructed image,
consuming great inference time and GPU memory. Thus
GIFD should have an advantage in inference speed. In Fig-
ure 1, we draw the cost-time curve for the intermediate
feature searching phase of GIFD and the parameter space
searching phase of GIAS. The corresponding PSNR values
of the results are also annotated in the figure.

As expected, GIFD completes the optimization task only
with less than 1/3 of the time for GIAS and further reduces
the loss. We also find that every time the optimizer moves to
the next feature space, the loss comes to a peak and quickly
decreases over several iterations. After getting stable, the
loss value of each layer is always below the curve of GIAS.

Further, we conduct experiments on methods with the
same distance metric as GIFD in Table 2. Although IG con-



verges faster, an attacker can perform attacks offline with a
copy of the historical global model and observed gradients,
thus the attack effect is more essential than inference speed.
In this case, GIFD achieves a good trade-off between effec-
tiveness and time cost.

Table 2: Converge time and results at batch size 4.

Method IG[3]  GIAS[6] GIFD

Time(s),  726.8008  1360.7808  907.727

PSNRT 141896  16.6995  18.4018

Loss) 0.008029  0.007803  0.006865
C. Ablation Study

We conduct ablation experiments on both two datasets to
further verify the effectiveness of each proposed technique.
There are three variants of GIFD. GIFD-z only searches the
latent space. GIFD-f starts to search the intermediate fea-
ture domain without the /; ball limitation and outputs the fi-
nal results from the last searched intermediate layer. Based
on GIFD- f, GIFD-e¢ selects outputs from the layer with the
least matching error. And GIFD is GIFD-e plus the [; ball
limitation. The results of Table 3 show that each aforemen-
tioned technique can further improve the performance.

Table 3: Ablation study of GIFD and its three variants on
every 1000th image of ImageNet and FFHQ validation set.

Metric
Method
PSNRT LPIPS| SSIMT MSE]
GIFD-z 13.9451 0.3445 0.1463 0.0488
GIFD-f 18.6457 0.2320 0.3916 0.0180
GIFD-e 19.4662 0.1900 0.4383 0.0161
GIFD 20.0534 0.1559 0.4713 0.0141
(a) ImageNet
Metric
Method
PSNRT LPIPS| SSIMT MSE|
GIFD-z 16.9947 0.1351 0.3931 0.0263
GIFD-f 20.2506 0.1462 0.5210 0.0123
GIFD-e 20.5839 0.1267 0.5412 0.0119
GIFD 21.3368 0.1023 0.5768 0.0098
(b) FFHQ

D. More Visual Comparison

We show more qualitative comparison on both in-
distribution datasets (ImageNet[2] and FFHQ[7]) and out-
of-distribution data (PACS [8]) in Figure 2.

We can easily find that our reconstructed images stay
closer to the original manifold. This again provides evi-
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Figure 2: More visual comparison of different methods on
in-distribution and out-of-distribution data.

dence that our method fully exploits the generative model
as an image prior and hence could reveal more sensitive in-
formation about the private data.



E. More FL Global Models.

To further validate our method, We provide numerical
results of PSNR on more global models below.

Table 4: PSNR for different global models on ImageNet.

Global model IG [3] GI[l4] GGL[9] GIAS[6] GIFD

ConvNet 22.8043 21.3876 13.2582  24.1741  25.5646
AlexNet 153390 16.3423 13.6605  17.5883  19.7926
VGG-16 13.3505 13.3856 13.9808  14.5414  16.0014
ResNet-18 17.0756 16.5109 13.3885  17.4923  20.0534
DenseNet-121  18.0840 17.3253  14.3538  18.1686 19.7376

As shown in Table 4, the overall attack performance var-
ied across different global models and GIFD always per-
forms the best, convincing the superiority of our method.
It also implies that the model structure is related to the de-
fense effect. Further study can look into it and design more
secure model structures.

F. Details about Gradient Transformation

More specifically, the adversary can infer three defense
strategies as follows (denote the received gradients by g):

(1) Gradient clipping. Given a clipping bound ¢, gra-
dient clipping transforms the gradients as 7 (g,¢) = g -
min(m, 1). Since this operation is always layer-wise, the
attacker can compute the /5 norm at each layer of the re-
ceived gradients as the estimated clipping bound.

(2) Gradient sparsification. Given a pruning rate p €
(0, 1), the client only transmits the (1—p) largest values of g
(in absolute value) and the rest values are replaced by zero.
Implemented by applying a layer-wise mask, the gradient
sparsity can be estimated by observing the percentage of
non-zero entries in the shared gradients.

(3) Soteria. Recently proposed by [12], it is an effi-
cient and reliable defense strategy. This operation is ac-
tually equivalent to applying a mask only to the gradients
of the defended layer. Once the global model fy and in-
put x are given, this process becomes deterministic. Then,
the attacker can inverse this mask according to the non-zero
entries of the gradients from the defended layer.

G. Another Approach for OOD Problem

Motivated by previous work [4, 13], Jeon et al. [6] pro-
pose another method that can solve the out-of-distribution
(OOD) problem through training a generative model only
with the shared gradients, i.e., Gradient Inversion to Meta-
Learn (GIML). They regard the global model in FL frame-
work as a discriminator and train the generator by solving
a set of gradient inversion tasks. However, assuming that
the private labels are known, their experiments are limited
to 32 x 32 images and the improvement is also limited. On

the contrary, our method has impressive effects on OOD
data and only requires a pre-trained GAN, which releases
the computing costs of training a generative model.

H. Discussion

Reconstruction at large batch sizes. Although our
method performs well in a range of experiments, the im-
provement at large batch sizes is still limited, implying that
attacks in such a scenario are still a major challenge. Mean-
while, we make the assumption that there are no duplicate
labels in each batch to infer the labels, which is also diffi-
cult to achieve in the real scenario. To relax the assumption
that non-repeated labels in a batch, we notice a recent pa-
per [10] has addressed the problem effectively, which can
be perfectly combined with our GIFD to enhance the attack
when there are duplicate labels.

Hypothesis about OOD data. In order to utilize the
powerful information brought by labels, we assume that
images from different distributions have the same label
space. To tackle more realistic OOD problems where la-
bel spaces are different, subsequent research could consider
using more powerful diffusion models [5, 11] as prior in-
formation, or using other related techniques to improve the
expressiveness of generative models.

I. Experimental Details

For each intermediate feature domain, we use Adam op-
timizer with 0.1 as the initial learning rate and give 1000
iterations. We adopt the warm-up strategy, where the learn-
ing rate linearly warms up from O to 0.1 during the first 1/20
of the optimization and gradually decays to 0 in the last 3/4
stage using cosine decay.

Guided by the theory [1] that a sequence of increasing
radii of the [; ball tends to provide better results, we grad-
ually allow larger deviations and tune the by experiment,
obtaining an appropriate setting as follows.

(1) For BigGAN, we only need to constrain the interme-
diate features:

¢ Intermediate features: [2000, 2500, 3000, 3500, 4000,
4500, 5000, 5500, 6000].

(2) StyleGAN?2 has more particularities we need to han-
dle for feature domain optimization. In addition to the inter-
mediate features, we optimize the noise vectors and apply
the [ ball constraint to them at the same time. Involved
in the generation of styles in StyleGAN?2, the latent vectors
also need to be optimized and we constrain their searching
range within an /; ball as well:

¢ Intermediate features: [2000, 3000, 4000, 5000]
¢ Noises: [1000, 2000, 3000, 4000, 5000]
¢ Latent vectors: [1000, 2000, 3000, 4000, 5000]



For the image fidelity regularization, we use ary =
1074, oy, = 1075, We run all experiments on NVIDIA

RTX 2080 Ti GPUs and A100 GPUs.

The experiments

on the effects of K and on defense strategies are each con-
ducted on 30 randomly selected images and the numerical
results for batch size are the averages of 10 batches.
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