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In this supplementary material, we provide the following

sections for a better understanding of the main paper. The

pseudo-code of clustering based point cloud segmentation

learning is elaborated in §A. §B presents the distribution

of point data over cluster centers. More qualitative and

quantitative results are further presented and analyzed in §C.

Finally, limitation and societal impact are discussed in §D.

A. Pseudo-Code
Algorithm S1 provides a pseudo-code of ‘assigning sub-

class labels’ function and ‘update operation’ function. Cor-

respondingly, Algorithm S2 provides a pseudo-code of JPCC

(see Eq. (7)). The implementation of JPPC is similar to

it, so we do not show pseudo-code for JPPC. Moreover,

to guarantee the reproducibility, our code is released at:

github.com/FengZicai/Cluster3Dseg.

B. Distribution of Subclass Clusters
Fig. S1 shows point assignment distribution for ‘truck’

and ‘traffic-sign’ classes, with different numbers M =
{10, 20, 40, 60, 80} of clusters. We can find that 1) the num-

ber of point samples assigned to each cluster is different; 2)

with the increase of M , some sub-class centers only con-

tain a limited number of samples, especially when M = 80.

In this case, the value of M has exceeded the number of

underlying subclass centers in the dataset, resulting in over-

clustering. And therefore, some trivial patterns may distract

the model and cause performance degradation.

C. More Qualitative and Quantitative Results
Complete Quantitative Result on SemanticKITTI Single-
Scan Challenge test. Table S1 and S2 report the complete

results on SemanticKITTI [1] single-scan challenge test.

Our method reaches 70.4% mIoU, which yields 2.6% mIoU

gains over Cylinder3D [2]. Moreover, it also outperforms

many famous segmentation models, such as AF2S3Net[3]

and RPVNet[4]. One more thing to point out, spvnas1 did

1https://github.com/mit-han-lab/spvnas/

not provide the source code of 3D-NAS pipeline and the

control file for SPVNAS12.5M. But the control file and pre-

trained models for SPVNAS10.8M are shared2. And the dif-

ference between SPVNAS12.5M and SPVNAS10.8M is that

SPVNAS10.8M is trained except sequence 08. As for our

implementation, SPVNAS10.8M and SPVNAS10.8M + Ours
are trained on sequences 00-10 and evaluated on 11-21.

Complete Quantitative Result on S3DIS Area-5. Table S3

and S4 present the complete per-class IoU on S3DIS [5]

Area-5. Both CBL[6] and our method use contrastive loss

on the premise of fully supervised learning. But [6] only

samples negative points locally around the boundaries, while

we contrast global subclass centers against the points sam-

pled from the ENTIRE training dataset. Our idea is much

more powerful and insightful. The fair comparison based

on PTV1[7] shows that our approach attains mIoU/mAcc of

72.2%/79.6%, outperforming PTV1+CBL (71.6%/77.9%).

Complete Quantitative Result on SemanticKITTI multi-
scan challenge test. Table S5 and S6 report the com-

plete results on SemanticKITTI [1] multi-scan challenge

test. With Cylinder3D, our algorithm also attains con-

sistent performance improvements of 2.2% mIoU, just like

that in single-scan test. Moreover, Cylinder3D+ Ours
surpasses Cylinder3D in 17 classes out of 25 classes.

Qualitative Results for Segmetation. We show more

qualitative results on SemanticKITTI [1] single-scan

challenge val (Fig. S2), S3DIS [5] Area-5 (Fig. S3) and

SemanticKITTI [1] multi-scan challengeval (Fig.S4). As

observed, our approach generally gives more accurate pre-

dictions compared with vanilla PTV1[7] and Cylinder3D[2].

In Fig. S3, vanilla PTV1 fails to recognize region bound-

aries and tends to misclassify board-like objects, while our

method can significantly reduce these errors. Fig. S4 de-

picts qualitative comparisons of Cylinder3D and Cylinder3D

+ Ours over lidar sequences on SemanticKITTI multi-scan

challenge val. Note that, the predicted labels of five consec-

utive frames are displayed in one frame. It can be observed

2SPVNAS has cancelled the download link for the Control file and

SPVNAS10.8M model. Instead, we will release the two previously down-

loaded files.
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that Cylinder3D + Ours has smaller errors over the seman-

tic boundaries as well as classes belonging to ground and

nature.

D. Limitation and Societal Impact
License of Assets. Cylinder3D3 is released with Apache

license. KPConv4 is implemented based on its released code

with MIT license. We have also implemented our method on

Point Transformer5. SPVNAS6 is implemented based on its

released code with MIT license. For 3D object detection, our

implementation is based on OpenPCDet7, and it is released

under the Apache 2.0 license.

Limitation. For some very rare classes, such as beam in

S3DIS [5], bicyclist in SemanticKITTI [1] multi-scan chal-

lenge, our algorithm did not show better-improved results.

However, many previous state-of-the-arts [2, 7, 8] also per-

form poorly on these classes. In the future, we plan to

explore smarter data sampling strategies and hard example

synthesis techniques to address this issue.

Societal Impact. For the potential negative societal impacts,

in real-world robot navigation tasks or autonomous driving

tasks, inaccurate prediction of point cloud labels may lead

agents to the wrong category and raise human safety con-

cerns. To avoid this potential problem, we suggest proposing

a security protocol in case of dysfunction of our algorithm

in real-world applications.

3https://github.com/xinge008/Cylinder3D/
4https://github.com/HuguesTHOMAS/

KPConv-PyTorch/
5https://github.com/POSTECH-CVLab/

point-transformer
6https://github.com/mit-han-lab/spvnas/
7https://github.com/HuguesTHOMAS/

KPConv-PyTorch/



Algorithm S1 Pseudo-code of clustering based point cloud segmentation learning - Part I.

# M: number of subclusters.
# nc: number of classes.
# dim: number of dimensions.
# x: features (N, dim).
# ŷ: labels (N).
# y: predicted labels (N).
# cc: cluster centers (num_classes, M, dim).
# L: clustering results.
# μ: momentum coefficient.

def assigning subclass labels(x, ŷ, y):
# selected features, subclass labels.
# selected cluster center embbedings, cluster center labels.
Xo,yo,˜Xo,ỹo = [],[],[],[]
# Record of new cluster centers for this iteration, see Eq.(5).
ncc = zeros(nc, M, dim)
this class = unique(this_y)
for idx in this class:

indices = (ŷ == idx).nonzero()
# select cluster centers with idx.
pc = select(cc, idx)
# select features with indices.
xc = select(x, indices)
yc = select(ŷ, indices)
PS = mm(xc, pc.T)
PS = softmax(PS, 1)
# Sinkhorn-Knopp algorithm.
online clustering()
yc = yc * M
yc = yc + L
# Averageing xc tensor according to L.
ncc[idx] = scatter mean(xc, L, dim=0, dim_size=M)
# append to output variables.
Xo = append(Xo, xc)
yo = append(yo, yc)
˜Xo = append(˜Xo, pc)
ỹo = append(ỹo, idx.repeat(M) * M+ tensor(list(range(M))))

return Xo,yo,˜Xo,ỹo

def update operation():

cc = cc * μ + ncc * (1 - μ)
cc = normalize((cc, p=2, dim=2))
return cc



Algorithm S2 Pseudo-code of clustering based point cloud segmentation learning - Part II.

# temperature: scalar temperature parameter
# Xi: selected features
# yi: selected subclass labels
# ˜Xi: cluster center embbedings
# ỹi: cluster center labels

def pcc contrastive(Xi,yi,˜Xi,ỹi):
anchor label = yi.view(-1, 1)
contrast label = ỹi.view(-1, 1)
anchor feature = Xi

contrast feature = ˜Xi

mask = eq(anchor_label, contrast_label.T)
anchor_dot_contrast = div( matmul(anchor_feature,

contrast_feature.T), temperature)
logits_max, _ = max(anchor_dot_contrast, dim=1, keepdim=True)
# To avoid the numerical overflow
logits = anchor_dot_contrast - logits_max.detach()

# neg_logits mean the sum of logits of all negative pairs
neg_mask = 1 - mask
neg_logits = exp(logits) * neg_mask
neg_logits = neg_logits.sum(1, keepdim=True)

# exp_logits mean the logit of each sample pair
exp_logits = exp(logits)
log_prob = logits - log(exp_logits + neg_logits)
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)

loss = - (temperature / base_temperature) * mean_log_prob_pos
loss = loss.mean()
return loss



Figure S1: Distribution plot with different numbers M = {10, 20, 40, 60, 80} of clusters for ‘truck’ and ‘traffic-sign’ classes.

(Best viewed with zoom-in.)



Table S1: Quantitative results on SemanticKITTI [1] single-scan challengetest (§4.1) - Part I. mIoU (%) and IoUs (%)

are reported.
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TangentConv[CVPR18][9] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1

SqueezeSegV2[ICRA19][10] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0

DarkNet53[ICCV19][1] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6

Rangenet++[IROS19][11] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0

3D-MiniNet[IROS20][12] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4

PointASNL[CVPR20][13] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2

PolarNet[CVPR20][14] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5

RandLA-Net[CVPR20][15] 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1

SqueezeSegV3[ECCV20][16] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0

SalsaNext[ISVC20][17] 59.5 91.7 75.8 63.7 29.1 90.2 91.9 38.9 48.3 38.6 31.9

FusionNet[ECCV20][18] 61.3 91.8 77.1 68.8 30.8 92.5 95.3 41.8 47.5 37.7 34.5

JS3C-Net[AAAI21][19] 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0

AF2S3Net[CVPR21][3] 69.7 91.3 72.5 68.8 53.5 87.9 94.5 39.2 65.4 86.8 41.1

RPVNet[ICCV21][4] 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1
PVKD[CVPR22][20] 71.4 91.8 77.5 70.9 41.0 92.4 97.0 53.5 67.9 69.3 60.2

KPConv[ICCV19][8] 58.8 88.8 72.7 61.3 31.6 90.5 96.0 33.4 30.2 42.5 44.3

KPConv + Ours 61.0 89.9 75.0 63.4 34.3 91.4 88.8 49.0 45.0 46.6 45.5

SPVNAS10.8M[ECCV20][21] 62.3 89.6 73.8 63.2 29.1 90.9 96.7 50.9 40.6 42.1 51.3

SPVNAS10.8M + Ours 64.3 89.6 73.9 64.0 28.8 91.4 96.7 48.0 48.9 50.5 51.0

Cylinder3D[CVPR21][2] 67.8 91.4 75.5 65.1 32.3 91.0 97.1 50.8 67.6 64.0 58.6

Cylinder3D + Ours 70.4 91.7 77.2 66.1 34.1 92.3 97.0 51.9 68.4 65.8 58.8

Table S2: Quantitative results on SemanticKITTI [1] single-scan challengetest (§4.1) - Part II. mIoU (%) and IoUs (%)

are reported.
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TangentConv[CVPR18][9] 40.9 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5

SqueezeSegV2[ICRA19][10] 39.7 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 26.3

DarkNet53[ICCV19][1] 49.9 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2

Rangenet++[IROS19][11] 52.2 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9

3D-MiniNet[IROS20][12] 55.8 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6

PointASNL[CVPR20][13] 46.8 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9

PolarNet[CVPR20][14] 54.3 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5

RandLA-Net[CVPR20][15] 55.9 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7

SqueezeSegV3[ECCV20][16] 55.9 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9

SalsaNext[ISVC20][17] 59.5 81.8 63.6 66.5 60.2 59.0 19.4 64.2 54.3 62.1

FusionNet[ECCV20][18] 61.3 84.5 69.8 68.5 59.5 56.8 11.9 69.4 60.4 66.5

JS3C-Net[AAAI21][19] 66.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7

AF2S3Net[CVPR21][3] 69.7 70.2 68.5 53.7 80.7 80.4 74.3 63.2 61.5 71.0

RPVNet[ICCV21][4] 70.3 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4

PVKD[CVPR22][20] 71.4 86.5 73.8 71.9 75.1 73.5 50.5 69.4 64.9 61.4

KPConv[ICCV19][8] 58.8 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4

KPConv + Ours 61.0 72.0 56.5 68.8 59.4 60.1 36.4 66.1 49.5 60.4

SPVNAS10.8M[ECCV20][21] 62.3 85.5 70.3 69.8 60.4 62.8 21.8 65.3 57.6 62.0

SPVNAS10.8M + Ours 64.3 85.3 72.1 69.1 67.1 70.5 23.2 67.0 60.7 64.5

Cylinder3D[CVPR21][2] 67.8 85.4 71.8 68.5 73.9 67.9 36.0 66.5 62.6 65.6

Cylinder3D + Ours 70.4 86.7 73.5 71.7 69.6 70.1 54.6 70.8 65.1 71.6



Table S3: Quantitative results on S3DIS [5] Area-5 (§4.2) - Part I. mIoU (%) and IoUs (%) are reported.
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PointNet[CVPR17][22] 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9 46.3 10.8

SegCloud[3DV17][23] 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4 38.4 23.1

TangentConv[CVPR18][9] 52.6 62.2 - 90.5 97.7 74.0 0.0 20.7 39.0 31.3

PointCNN[NeurIPS18][24] 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1

SPGraph[CVPR18][25] 58.0 66.5 86.4 89.4 96.9 78.1 0.0 42.8 48.9 61.6

PCCN[CVPR18][26] 58.3 - 67.0 92.3 96.2 75.9 0.3 6.0 69.5 63.5

HPEIN[ICCV19][27] 61.9 68.3 87.2 91.5 98.2 81.4 0.0 23.3 65.3 40.0

PAT[CVPR19][28] 60.1 70.8 - 93.0 98.5 72.3 1.0 41.5 85.1 38.2

PointWeb[CVPR19][29] 60.3 66.6 87.0 92.0 98.5 79.4 0.0 21.1 59.7 34.8

MinkowskiNet[CVPR19][30] 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1 48.9 62.4

SCF-Net[CVPR21][31] 63.8 - - - - - - - - -

BAAF-Net[CVPR21][32] 65.4 73.1 88.9 - - - - - - -

CGA-Net[CVPR21][33] 68.6 - - 94.5 98.3 83.0 0.0 25.3 59.6 71.0

Stratified Trans.[CVPR22][34] 72.0 78.1 91.5 - - - - - - -

PTV2[NeurIPS22][35] 72.6 78.0 91.6 - - - - - - -

KPConv[ICCV19][8] 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9 58.0 69.0

KPConv+ Ours 69.0 76.2 90.5 95.7 98.3 84.0 0.0 30.7 66.7 77.6

PTV1[ICCV21][7] 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0 63.4 74.3

PTV1+CBL[CVPR22][6] 71.6 77.9 91.2 - - - - - - -

PTV1+ Ours 72.2 79.6 91.2 94.2 98.4 88.1 0.0 49.3 65.3 79.4

Table S4: Quantitative results on S3DIS [5] Area-5 (§4.2) - Part II. mIoU (%) and IoUs (%) are reported.
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PointNet[CVPR17][22] 41.1 49.0 - 52.6 58.9 40.3 5.9 26.4 33.3

SegCloud[3DV17][23] 48.9 57.4 - 70.4 75.9 40.9 58.4 13.0 41.6

TangentConv[CVPR18][9] 52.6 62.2 - 77.5 69.4 57.3 38.5 48.8 39.8

PointCNN[NeurIPS18][24] 57.3 63.9 85.9 74.4 80.6 31.7 66.7 62.1 56.7

SPGraph[CVPR18][25] 58.0 66.5 86.4 84.7 75.4 69.8 52.6 2.1 52.2

PCCN[CVPR18][26] 58.3 - 67.0 66.9 65.6 47.3 68.9 59.1 46.2

HPEIN[ICCV19][27] 61.9 68.3 87.2 75.5 87.7 58.5 67.8 65.6 49.4

PAT[CVPR19][28] 60.1 70.8 - 57.7 83.6 48.1 67.0 61.3 33.6

PointWeb[CVPR19][29] 60.3 66.6 87.0 76.3 88.3 46.9 69.3 64.9 52.5

MinkowskiNet[CVPR19][30] 65.4 71.7 - 81.6 89.8 47.2 74.9 74.4 58.6

SCF-Net[CVPR21][31] 63.8 - - - - - - - -

BAAF-Net[CVPR21][32] 65.4 73.1 88.9 - - - - - -

CGA-Net[CVPR21][33] 68.6 - - 82.6 92.2 77.7 76.4 69.5 61.5

Stratified Trans.[CVPR22][34] 72.0 78.1 91.5 - - - - - -

PTV2[NeurIPS22][35] 72.6 78.0 91.6 - - - - - -

KPConv[ICCV19][8] 67.1 72.8 - 81.5 91.0 75.4 75.3 66.7 58.9

KPConv+ Ours 69.0 76.2 90.8 79.9 91.0 70.3 76.7 63.0 63.6

PTV1[ICCV21][7] 70.4 76.5 90.8 89.1 82.4 74.3 80.2 76.0 59.3

PTV1+CBL[CVPR22][6] 71.6 77.9 91.2 - - - - - -

PTV1+ Ours 72.2 79.6 91.2 89.4 82.2 74.8 77.6 81.0 58.7



Table S5: Quantitative results on SemanticKITTI [1] multi-scan challengetest (§4.3) - Part I. mIoU (%) and IoUs (%) are

reported.
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TangentConv[CVPR18][9] 34.1 83.9 64.0 38.3 15.3 85.8 84.9 40.3 21.1 1.1 2.0 18.2 18.5 6.4

DarkNet53[ICCV19][1] 41.6 91.6 75.3 64.9 27.5 85.2 84.1 61.5 20.0 14.1 30.4 32.9 20.7 15.2

TemporalLidarSeg[3DV20][36] 47.0 91.8 75.8 59.6 23.2 89.8 92.1 68.2 39.2 2.1 47.7 40.9 35.0 12.4

SpSeqnet[CVPR20][37] 43.1 90.1 73.9 57.6 27.1 91.2 88.5 53.2 29.2 41.2 24.0 26.2 22.7 26.2
KPConv[ICCV19][8] 51.2 86.5 70.5 58.4 26.7 90.8 93.7 69.4 42.5 5.8 44.9 47.2 38.6 4.7

KPConv+ Ours 53.2 90.4 75.2 62.1 25.1 91.8 95.8 75.2 43.8 4.1 67.2 63.1 44.2 0.7

Cylinder3D[CVPR21][2] 52.5 90.7 74.5 65.0 32.3 92.6 94.6 74.9 41.3 0.0 67.6 63.8 38.8 0.1

Cylinder3D+ Ours 54.7 91.4 76.9 66.1 27.8 91.4 95.3 81.7 42.7 11.9 55.9 52.9 38.7 11.2

Table S6: Quantitative results on SemanticKITTI [1] multi-scan challengetest (§4.3) - Part II. mIoU (%) and IoUs (%)

are reported.
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TangentConv[CVPR18][9] 34.1 79.5 43.2 56.7 1.6 1.9 0.0 30.1 0.0 42.2 49.1 36.4 31.2

DarkNet53[ICCV19][1] 41.6 78.4 50.7 64.8 7.5 0.2 0.0 28.9 0.0 37.8 56.5 38.1 53.3

TemporalLidarSeg[3DV20][36] 47.0 82.3 62.5 64.7 14.4 40.4 0.0 42.8 0.0 12.9 63.8 52.6 60.4

SpSeqnet[CVPR20][37] 43.1 84.0 66.0 65.7 6.3 36.2 0.0 2.3 0.0 0.1 66.8 50.8 48.7

KPConv[ICCV19][8] 51.2 84.6 70.3 66.0 21.6 67.5 0.0 67.4 0.0 47.2 64.5 57.0 53.9

KPConv+ Ours 53.2 85.4 71.1 69.3 10.7 72.1 0.0 68.5 9.9 9.9 67.5 62.6 64.6

Cylinder3D[CVPR21][2] 52.5 85.8 72.0 68.9 12.5 65.7 1.7 68.3 0.2 11.9 66.0 63.1 61.4

Cylinder3D+ Ours 54.7 86.5 72.7 71.6 15.5 61.8 0.0 68.2 3.0 46.0 66.1 64.0 68.0
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Figure S2: Error maps of Cylinder3D [2] and Ours on SemanticKITTI [1] single-scan challenge val (§4.1). The differences

are as illustrated by arrows.
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Figure S3: Error maps of PTV1 [7] and Ours on S3DIS [5] Area-5 (§4.2). The differences are as illustrated by arrows.
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are as illustrated by arrows.
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