
Supplementary Material for:
Hierarchical Contrastive Learning for Pattern-Generalizable

Image Corruption Detection

1. Overview
In this supplementary material, we provide more imple-

mentation details, model architecture, experimental results,
and analysis, including:

• Detailed architecture of Transformer-based Restora-
tion model (Section 2).

• Training details of proposed hierarchical contrastive
learning framework(Section 3).

• Additional results of ablation study and user study
(Section 4).

• More visual comparisons in various experimental set-
tings, including typical blind image inpainting, bidi-
rectional blind image inpainting, model generalization,
image watermark removal, and shadow removal (Sec-
tion 5).

2. Network Architecture
As illustrated in Figure 2 in the main paper, our

Transformer-based restoration model follows the encoder-
decoder framework. Given an input image, it first employs
a convolution with 5×5 kernel to extract image tokens. Ta-
ble 1 lists the detailed architecture of our Transformer-based
restoration model, which mainly consists of three parts, en-
coder, bottleneck, and decoder. Since encoder needs to pre-
dict corruption masks by hierarchical contrastive learning,
as well as extracting features from the input image, it con-
tains more transformer blocks. Finally, decoder employs
a 1×1 convolution to generate output images, which are
further sent to an additional Conv-U-Net to refine high-
frequency details of output results, leaning upon the local
texture refinement capability and efficiency of CNNS. Be-
sides, our model employs stride-2 convolution to downsam-
ple feature maps in encoder and nearest neighboring inter-
polation to upsample feature maps in decoder.

In hierarchical interaction mechanism, our model lever-
ages a projection head to produce input features in the cur-
rent stage from features in the previous stage, which com-
prises two fully connected layers and a GELU [4] nonlinear-
ity in between. Thus, it is able to perform contrastive learn-

Table 1: Architecture of Transformer-based Inpainting
Model

Module Stage Dim Resolution Blocks Heads

Encoder
T1 64 256×256 6 1
T2 128 128×128 4 2
T3 256 64×64 2 4

Bottleneck T4 256 64×64 2 4

Decoder
T5 256 64×64 2 4
T6 128 128×128 2 2
T7 64 256×256 2 1

ing and clustering analysis in the projected feature space.
Besides, our model also employs a linear mapping to de-
crease the feature dimension.

Our framework employs a Conv-U-Net to improve the
quality of image details, following previous methods [7, 3]
for image inpainting. It takes the reconstructed image and
the predicted mask as input, gradually downsampling the
feature maps by five convolution-based residual blocks, and
then upsampling back to the original size. The number of
feature channels starts from 64 and is doubled after each
downsampling with a maximum of 512. All the convolu-
tions are gated convolutions [10], which allows the network
to automatically refine the content of corruption regions.

3. Implementation Details
The training procedure of hierarchical contrastive learn-

ing contains two phases. In the first phase, we train the
Transformer-based inpainting model with loss coefficients
λ1 = 0.1,λ2 = 1,λ3 = 0.1 and λ4 = 0. The learning rate is
0.001. Before the convergence of training contrastive learn-
ing, we feed the groundtruth masks to decoder for stabiliz-
ing the training of image inpainting. Note that we simulta-
neously train encoder and decoder together to avoid losing
low-level details of the input image by contrastive learn-
ing. After the training of contrastive learning in all stages is
converged, we jointly train the Transformer-based inpaint-
ing model and the refinement network with loss coefficients
λ1=0.1,λ2=1,λ3=0.1,λ4=1. The learning rate of the re-
finement network and the discriminator is 0.0001. The L1
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Figure 1: Comparison with single stage contrastive learn-
ing.

Table 2: Experiments on different depths.
Depth 1 2 3 4

F1 ↑ 0.967 0.984 0.986 0.982

IoU ↑ 0.938 0.970 0.973 0.966

loss and perceptual loss are employed on both outputs of
two networks, while the adversarial loss is only employed
on the refined results.

4. Additional Experimental Results
4.1. Ablation study.

Effect of hierarchical contrastive learning. In Fig-
ure 1, we further compare the performance of our hi-
erarchical contrastive learning-based model with single-
stage contrastive learning-based models on three bench-
mark datasets [11, 6, 2]. The results demonstrate that our
proposed method improves the performance of mask detec-
tion for blind image inpainting.

Investigation on the depth of hierarchical contrative
learning. To explore which depth is optimal to detect the
corrupted mask, we train the model with different depths of
hierarchical contrastive learning on FFHQ [6] dataset. The
experimental results are illustrated in Table 2, which shows
deploying three depths of hierarchical contrastive learning
achieves the best performance.

Table 3: Effect of capacity on generalization.
Corruption pattern Random constant CelebA-HQ [5]

Mask ratio (%) 0-30 30-60 0-30 30-60

Acc ↑ VCNet (1.37M) 0.981 0.977 0.975 0.974
Ours-small (808K) 0.987 0.981 0.981 0.975

IoU ↑ VCNet (1.37M) 0.977 0.960 0.969 0.954
Ours-small (808K) 0.985 0.965 0.976 0.956

Table 4: ConvNet vs. Transformer.
Methods Segmenter [8] VCNet [9] ConvNet+HCL (Ours) Transformer+HCL (Ours)

ACC↑ 0.974 0.975 0.978 0.980
IoU↑ 0.962 0.963 0.969 0.970

Table 5: Computational overhead.
Metrics Params (M) Memory usage (GB) GMACs Inference time (ms)

VCNet 3.88 1.65 11.4 15.3
Ours 3.57 1.97 10.6 29.1 (28.7 for Transformer)

Effect of capacity on generalization. To investigate the
effect of model capacity on the generalization, we reduce
the size of our model to only 0.6× of VCNet, and find that
our model still outperforms VCNet distinctly, as shown in
Table 3.

ConvNet vs. Transformer. We further investigate the ef-
fect of the backbone network by using ConvNet, with sim-
ilar structure and model size as VCNet, as the backbone
for our Hierarchical Contrastive Learning, denoted as ‘Con-
vNet+HCL’. The performance of corruption detection on
Places dataset in Table 4 validates the effectiveness of our
model.

Computational complexity. The results listed in Table 5
lists show that 1) our model has comparable parameters,
memory usage and MACs with VCNet; 2) our model has
longer inference time than VCNet, most of which are con-
sumed by Transformer.

4.2. User study.

Since quantitative metrics have their bias for the quality
evaluation of restored images, to standardize evaluation pro-
cess, we further perform user study in our experiment. We
randomly select 50 test images of FFHQ [6] and Places [11]
respectively, and present reconstructed results of two meth-
ods to 20 human subjects for manual ranking of image qual-
ity. Figure 3 lists the voting results of this user study. For the
FFHQ dataset, our model reaches 80.2% votes among total
50×20=1000 rankings, which is much higher than VCNet.
In addition, we count winning samples of each method, and
our model wins on 41 test samples and VCNet altogether
9 samples. As for the Places dataset, our model reaches
72.1% votes among 1000 rankings, which is significantly
higher than VCNet as well. And our model wins on 37 test
samples and VCNet 13 samples. As a result, our model is
able to precisely detect the corruption mask and fill in more
realistic content for corrupted regions.
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Figure 2: Visualization of masks in different stages.
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Figure 3: The results of user studies. First row: winning
samples. Second row: share of the vote.
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Figure 4: The microphone is mis-detected as corruption.

5. More Qualitative Results

Visualization of detected masks across stages. We visu-
alize the detected masks across stages with and without our
hierarchical contrastive learning in Figure 2, which reveals
the effectiveness of our hierarchical contrastive learning.
Failure cases. A foreground object that differs semanti-
cally from the other context, especially rarely appeared in
the training data, tends to be mis-detected as corruption.
Figure 4 illustrates such an example, in which the micro-
phone is wrongly recognized as corruption.
Typical blind image inpainting We present more visual
results on three benchmark datasets [6, 2, 11] in Figure 5-
11.Note that our method not only achieves higher-quality
results while coping with different corruption ratios, but
also gets impressive results in the bidirectional blind image
inpainting setting.
Generalization w.r.t. corruption patterns We also sup-
plement the visual results of generalization experiments on
novel corruption patterns, including random noise (shown
in Figure 13 and Figure 14), single constant (shown in Fig-
ure 15 and Figure 16), and CelebA-HQ [5] (shown in Fig-
ure 17 and Figure 18).
Other tasks of image restoration To show the great po-

tential of proposed hierarchical contrastive learning method
in real-life applications, we also present the experimental
results on other tasks of image restoration, such as image
watermark removal (shown in Figure 19) and image shadow
removal (shown in Figure 20).
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Figure 5: Visual results of blind image inpainting on FFHQ dataset [6].
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Figure 6: Visual results of blind image inpainting on FFHQ dataset [6].
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Figure 7: Visual results of blind image inpainting on ImageNet dataset [2].
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Figure 8: Visual results of blind image inpainting on ImageNet dataset [2].
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Figure 9: Visual results of blind image inpainting on Places dataset [11].
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Figure 10: Visual results of blind image inpainting on Places dataset [11].
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Figure 11: Visual results of bidirectional blind image inpainting on FFHQ dataset [6].
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Figure 12: Visual results of blind image inpainting on 512×512 images.
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Figure 13: Visual results of model generalization to the unseen corruption: noise corruption.
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Figure 14: Visual results of model generalization to the unseen corruption: noise corruption.
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Figure 15: Visual results of model generalization to the unseen corruption: single-value constant corruption.
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Figure 16: Visual results of model generalization to the unseen corruption: single-value constant corruption.
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Figure 17: Visual results of model generalization to the unseen corruption: graffiti with CelebA-HQ [5] images.
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Figure 18: Visual results of model generalization to the unseen corruption: graffiti with CelebA-HQ [5] images.
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Figure 19: Visual comparison with state-of-the-art methods [9, 1] for image watermark removal. ‘Split then refine’ [1] is a
specialized model for image watermark removal.
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Figure 20: Visual comparison with state-of-the-art methods [9, 12] for image shadow removal. BMNet [12] is a specialized
model for image watermark removal.


