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A. Implementation Details

In this section, we discuss practical considerations for
numerically computing log-probabilities and gradients un-
der a score-based prior. We also discuss the experimental
setups of our presented results.

A.1. Score-Based Priors
A.1.1 Log-probability computation

Recall that for a pretrained score model sy(x,t), the log-
probability formula is given by

T
10gpo(xo)=10ng(XT)+/ V- f(xq, t;0)dt, (1)
0

where f(x;, t; #) comes from the probability flow ODE:

dx; = |f(x¢,t) — ;g(t)Qs‘g(xt,t)} dt =: f(xq,t)dt. (2)

Given an image x, to compute log py(x) under the score-
based prior parameterized by 6, we have to solve an initial-
value problem, where x; = x and % = f(xy, ;).
Log-probability estimation. The two implementation
decisions that most affect log-probability accuracy are: (1)
which ODE solver to use and (2) how to estimate the diver-
gence in Eq. 1. To deal with (1), our code uses Diffrax [5],
a JAX library for differential equations, to easily swap out
solvers and adaptively select time steps. As for (2), we use

Hutchinson-Skilling estimation with multiple trace estima-
tors to reduce the variance of log-probability and gradient
calculations.

ODE solver. Tab. A.1.1 shows how different solvers af-
fect time-efficiency and KL divergence to a ground-truth
distribution. The ground-truth is the Gaussian distribu-
tion used in Main Sec. 3.2. This suggests that Bogacki—
Shampine’s 3/2 method and Dormand-Prince’s 5/4 method
offer a good balance between efficiency and accuracy.
Note, however, that score-based priors trained on different
datasets may show different trends. It is always a good idea
to evaluate the runtime of different solvers for a given score-
based prior to find the most efficient solver.

I Solver | Dx(qllp) (1) | NFE low. bound (]) ||
Euler* (1st order) 0.848 4092
Heun (2nd order) 0.478 312
Bosh3 (3rd order) 0.453 81
Tsit5 (5th order) 0.521 255
Dopri5 (5th order) 0.284 65
Dopri8 (8th order) 0.422 1440

Table 1. KL divergence depending on the solver used for log-
probability computation. “Euler” used a fixed step-size of 1/4092.
All other solvers used adaptive step-sizing, with the number of
function evaluations (“NFE”) calculated as the number of solver
steps times the order of the solver. The KL divergence was esti-
mated from 512 samples from the ODE sampler.

Trace estimation. For high-dimensional data, trace es-
timation is necessary to estimate the divergence in Eq. 1.
This causes variance in the estimated log-probabilities and
gradients. Song et al. [8] use Hutchinson-Skilling with one
trace estimator, but we use multiple trace estimators to re-
duce variance. In our implementation, the same trace esti-
mators are applied to each image in a batch. Figs. 1 and 2
show the variance of densities and gradients, respectively,
depending on the number of trace estimators used.

A.1.2 Gradient estimation

Adjoint ODE. To compute the exact gradient Vy log pg(x),
we would need to backpropagate through the ODE solve.
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Figure 1. Mean and variance of log-probability values vs. number
of trace estimators. The score-based prior was fit to the ground-
truth Gaussian distribution used in Main Sec. 3.2. For each num-
ber of trace estimators (1, 2, 4, 8, 16, 32, 64, or 128), 50 trials of
log-probability estimation were done with different random seeds
(using the Dopri5 solver with adaptive step-sizing). The solid blue
line indicates the mean of these trials, and the shaded region indi-
cates one std. dev. above and below the mean. The solid green
line shows the value resulting from exact trace calculation. The
evaluated image is inset. As more trace estimators are used, the
variance of the log-probability decreases.

This is too memory-intensive, so we opt for the continu-
ous adjoint method [, 5], which solves a secondary ODE
that gives the gradient of the idealized continuous-time pri-
mary ODE. This adjoint method best balances our memory,
speed, and accuracy requirements. Direct backpropagation
through the probability flow ODE could be possible with
improved gradient-checkpointing.

A.2. Posterior Sampling Experiments

Gaussian ground-truth distribution. The Gaussian
distribution is defined for 16 x 16 grayscale images. The
mean and covariance were fit by expectation-maximization
to images from the CelebA training set (each image was first
center-cropped to 140 x 140 and then rescaled to 16 x 16).
The covariance was preconditined by adding 0.01 along
the diagonal. To generate a batch of training data for a
score model, samples are randomly drawn from the result-
ing Gaussian distribution.

Score model. All score models that were trained on 32 X
32 images had an NCSN++ architecture [8] with 64 filters
in the initial layer. The score model trained on the Gaussian
ground-truth distribution in Main Sec. 3.2 had 128 filters in
the initial layer.

DPI implementation. We adapted the PyTorch imple-
mentation of DPI [9] ! for JAX/Flax. For all presented
results on image posterior sampling, we used a RealNVP
architecture with 64 affine-coupling layers. The RealNVP
was optimized with stochastic gradient descent (SGD) with
a batch size of 64. We used Adam optimizer with a learning
rate of 0.0002 and clipped gradients to have norm 1.

DPI sampling. Once optimized, the ReaNVP can be
sampled to obtain samples from the approximate poste-

'https://github.com/HeSunPU/DPI

128

rior. Occasionally the ReaNVP produces a clearly out-
of-distribution sample, so we remove such outliers by dis-
carding any sample with a pixel value whose magnitude is
greater than 2. Although not needed in most cases, we ap-
plied this postprocessing step before computing statistics of
DPI-estimated posteriors.

DPI optimization time. The main computational bot-
tleneck is computing log-probabilities for each batch. Since
we use adaptive step-size controllers, the time required for
each SGD step is variable. In our experiments, we found it
ranged from 30 seconds/step to 200 seconds/step. The time
required for each ODE solve could also depend on the com-
plexity of the distribution underlying the score-based prior.
For example, we found CelebA priors to be faster (about 50
seconds/step for interferometric imaging experiments) and
CIFAR-10 priors to be slower (about 200 seconds/step for
deblurring a CIFAR-10 image, which was the slowest case).
The RealNVP generally converges within 5000-10000 SGD
steps, although we ran the optimization for 20000-50000
steps to be sure of convergence. We used v4-8 TPUs to per-
form the optimization.

Although DPI with a score-based prior takes a long time
to optimize, it is extremely efficient for sampling. Sampling
128 samples (32 x 32 RGB images) takes about 2.76 sec-
onds. In contrast, the diffusion-based baselines that we in-
clude in the main text are much slower. To get 128 samples,
SDE+Proj [7] takes 20.8 seconds; Score-ALD [4] (with
5 Langevin-dynamics steps at each annealing level) takes
51.8 seconds; and DPS [2] takes 34.1 seconds.

Furthermore, our framework gives a reliable and rich
posterior automatically. This saves human time and effort
that would have been spent on carefully handcrafting and
validating regularizers/priors.

A.3. 2D Experiments

Supp. Fig. 5 and Main Fig. 4 compare our posterior-
sampling approach to baselines (SDE+Proj, Score-ALD,
DPS) on a toy 2D posterior. Our samples were gen-
erated from a RealNVP with 32 affine-coupling lay-
ers. All methods used the same true score model.
Since baseline methods do not provide posterior proba-
bilities (only samples), we used kernel density estima-
tion (KDE) to approximate a probability density func-
tion (PDF) from 10000 samples. In Fig. 5, PDFs
were estimated with scipy.stats.gaussian_kde,
which includes automatic KDE bandwidth selection. In
Main Fig. 4, sklearn.neighbors.KernelDensity
was used with a bandwidth-0.03 Gaussian kernel, since
scipy.stats.gaussian_kde does not do well on
multimodal distributions.
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Figure 2. Mean and variance of Vx log ps(x) with 10 vs. 50 trace estimators. The score-based prior was trained on 32 x 32 grayscale
CelebA images. (a) Test image x and gradient according to the learned score model, s¢(x,t), evaluated at ¢ = 0. (In reality, we set
t = 1073 for numerical stability and perturbed x with noise accordingly.) Since the test image was drawn as x ~ po, the score-model
output should equal the true V log pe(x). (b) Results of estimating the gradient Vx log p(x) with the probability flow ODE including
trace estimation. For both “10 trace estimators” and “50 trace estimators”, 50 trials of gradient estimation were done with the continuous
adjoint method. “Mean Grad.” and “Std. Dev.” are the average gradient and std. dev. of the gradient of all these runs. “Cosine Dist. to
so(x,t = 0)” shows the histogram of the cosine distance between each gradient estimate and the score-model output, which we consider
to be ground-truth. The results in (b) are evidence that trace estimation gives a good approximation of the gradient in expectation, but using
fewer trace estimates causes higher variance. With 10 trace estimates, the median relative std. dev. of the gradient is 16%. With 50 trace
estimates, it is 8.6%. (Relative std. dev. is computed as |o|/|x|.) Also note that regions of highest variance are in the image background.

B. Image-Restoration Metrics

For our results on deblurring, we evaluated our chosen
posterior-sampling approach against baselines (SDE+Proj,
Score-ALD, DPS) using standard image-restoration metrics
(MSE, SSIM, PSNR). Fig. 3 shows the evaluated metrics.
We emphasize that such metrics do not reflect the correct-
ness of the posterior. But for applications that call for high-
quality posterior samples, Fig. 3 suggests that our frame-
work is still preferable to baselines.

C. Score-Based Priors vs. Discrete-Flow Priors

Although discrete normalizing flows (e.g., ReaINVP [3],
Glow [6]) are generative networks that provide image prob-
abilities, they suffer from two limitations: (1) they are re-
stricted to invertible network architectures, which limits the
ability to express a diverse and sophisticated image distribu-
tion; and (2) their probability function does not generalize
well outside of training data. We note that a score-based
diffusion model (following the probability flow ODE) is ac-
tually a continuous-time normalizing flow [8].

Main Fig. 6 and Main Tab. 1 show the results of using
a discrete normalizing-flow (NF) image prior for denoising.
Fig. 4 shows results for deblurring. In both experiments,
the NF used was a RealNVP with 64 affine-coupling lay-
ers, and DPI optimization was done with a learning-rate of
1075 and gradients clipped to a norm of 1. Compared to the
score-based prior trained on the same dataset, the NF prior
resulted in less visually-convincing samples and caused un-
stable optimization of the DPI posterior. The inferior qual-

CelebA Image
Sc-ALD | 0.0093 | 0.781 | 20.37 || 0.0203 | 0.539 | 16.98
DPS| 0.0070 | 0.823 | 21.66 || 0.0186 | 0.585 | 17.47
SDE+Proj | 0.0120 | 0.745 | 19.38 || 0.0216 | 0.525 | 16.74
Ours| 0.0034 | 0.880 | 24.75 || 0.0068 | 0.757 | 21.65
(a) CelebA prior (b) CIFAR-10 prior
CIFAR-10 Image

Sc-ALD| 0.0194 | 0.635 | 17.15 || 0.0383 | 0.469 | 14.20
DPS| 0.0183 | 0.651 17.42 || 0.0312 | 0.519 | 15.15
SDE+Proj | 0.0158 | 0.669 | 18.03 || 0.0291 | 0.521 15.44
Ours | 0.0109 | 0.764 | 19.62 || 0.0157 | 0.684 | 18.05

(c) CIFAR-10 prior (d) CelebA prior
Figure 3. Image-restoration metrics (deblurring example). For
Main Figs. 7 and 8, average MSE, SSIM, and PSNR of 128 es-
timated samples from each method compared to the true source
image were evaluated. Our posterior samples outperform baseline
samples for every combination of a source image and prior (e.g.,
CIFAR-10 prior applied to a CelebA source image).

ity of samples might be due to the limited expressiveness of
a discrete NF. The instability might be due to the NF’s in-
ability to generalize to non-training images. This is relevant
for inference algorithms that are randomly initialized (like
DPI), as randomly-initialized images are likely far away



from the prior. We note that, although an NF prior con-
sistently performed poorly in our experiments, clever ini-
tialization might make DPI optimization more stable with
an NF prior, and other NF architectures might be more ex-
pressive than a RealNVP architecture.

RealNVP
Prior

Score-Based

Naive Prior Original

Figure 4. Score-based prior vs. RealNVP prior. A score-based
diffusion model and a RealNVP were each trained on the same
CelebA training set. We then applied each of their probability
functions as the prior in DPI for the task of deblurring (the same
task as in Main Fig. 7). Two samples are shown from each esti-
mated posterior.

While a RealNVP is not as expressive as a diffusion
model, our experiments with DPI suggest that a ReaINVP
can model a posterior that is sufficiently constrained by
measurements. If the inverse problem is extremely ill-posed
— meaning the posterior is almost indistinguishable from
the prior — then a RealNVP would probably not sufficiently
capture the distribution. DPI is not restricted to discrete nor-
malizing flows, though. As long as the generative model
used to approximate the posterior is invertible, it can be op-
timized via the variational objective.
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Figure 5. In this toy example with a Gaussian prior and linear mea-
surements, we see that our method samples from the true posterior
regardless of the measurement noise. For SDE+Proj, Score-ALD,
and DPS, the optimal hyperparameter value was found (according
to sample-approximated KL divergence to the true posterior) for
the “Low meas. noise” case. The same value was then applied for
the “High meas. noise” case. SDE+Proj and DPS severely under-
estimate the spread of the posterior. Score-ALD works well here
since the approximation of the measurement-likelihood converges
to the true likelihood distribution as ALD continues. In general,
though, Score-ALD can become unstable when the measurement
annealing rate (i.e., the sequence of ~;’s) is not well-tuned.
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