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This supplementary material provides additional experi-
mental comparison, implementation details of semantically-
aware encryption, and ablation study of taking all fore-
ground objects as regions of interest.

A. Comparison with Other Methods
In this section, we compare our proposed method with

VTM 18.2 and three other methods designed for image
coding for machines: the traditional codec based RoI bit-
allocation scheme [4], the learning based joint training
codec [5], and the general representation learning based ap-
proach [1]. The evaluation task is instance segmentation on
COCO 2017 [6]. It is noteworthy that the bitstreams of RoI
bit-allocation [4] and the task-driven joint training methods
are tailored to the corresponding task, and the general repre-
sentation learning based method [1] necessitates retraining
the task model with new source data (i.e., the learned repre-
sentation). Nevertheless, our method still yields significant
improvement compared with other methods.

Figure 1. Instance segmentation on MS COCO.

B. Semantically-Aware Encryption
We conduct encryption on latent variables. Specifically,

for each group to be encrypted, the chosen variables are first
reshaped into a one dimensional vector, and then perturbed
by Fisher-Yates shuffle algorithm [2]. The perturbance is
achieved through a cryptographic random seed. And, the
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perturbed vector is rearranged into its original shape and en-
coded into the corresponding bitstream. Correspondingly,
the likelihood is shuffled in the same way for entropy cod-
ing. Then, entropy coding are conducted on the latent
variables of current group, resulting in the encrypted bit-
stream. At last, the semantically structured bitstream con-
sists of both encrypted and non-encrypted ones according
to requirements. Furthermore, the user can perform differ-
ent levels of encryption on different groups, resulting in the
layered encrypted bitstream.

C. Ablation Study

(a) RoI reconstruction. (b) Instance Segmentation.

Figure 2. Ablation study.
In Section 5 of the main text, we perform ablation stud-

ies by regarding people as the regions of interest (RoI).
In this section, we provide additional experimental results,
where we consider all foreground objects belonging to MS
COCO’s categories as the RoI. The results shown in Fig-
ure 2 indicate the same conclusion as Section 5 of the main
text, that our proposed group mask can significantly save bi-
trate while the group-independent transform can ensure the
reconstruction quality of selective transmission and recon-
struction.

D. Complexity Analysis

D.1. Parameter-Performance Trade-Off

We evaluated the parameter-performance trade-off of
our approach under two scenarios: with and without a
structured bitstream (Struc.), and compared it with the
transformer-based method Zhu2022 [7] and the CNN-based



method ELIC [3]. The comparison includes decoding time
(Dec.), parameters (Par.), complexity (FLOPs) and coding
efficiency (BD rate). The results presented in Table 1 in-
dicate that our method can achieve comparable RD per-
formance and decoding complexity while saving parame-
ters compared with the other two SOTA codecs. For the
entire image reconstruction, semantically structured bit-
stream (SSB) causes a increase in decoding time and a
slight BD-rate drop. This is because the bitstreams of all
groups are individually stored during encoding, resulting
in a small amount of additional overhead and the traver-
sal of all groups decoding. However, given the flexibility
and functionality of SSB, we consider the additional cost of
decoding complexity and bitrate to be acceptable.

Table 1. Comparison of model complexity and BD-rate (%)
over VTM-18.2 for entire image reconstruction on Kodak.

Model Struc. Dec. Par. (M) FLOPs (G) BD-rate

Zhu2022 × 84 60.55 230.37 -2.32
ELIC (repro.) × 90 28.29 179.69 -4.10
Ours-ChARM × 96 23.13 193.42 -2.78
Ours-ChARM ✓ 258 23.13 193.42 -1.89

D.2. Analysis regarding run time for different as-
pects.

Table 2 shows the run-time analysis for different aspects
of our approach. Semantically structured bitstream enables
us only decode the bitstreams of corresponding groups for
partial reconstruction or specific downstream tasks, result-
ing in a proportional reduction of YDec.

Table 2. Decoding complexity (ms) of our model under sce-
narios of with and without structured bitstream (Struc.), in
terms of the whole decoding time (Dec.), time of decoding
latent ŷ (YDec.), time of decoding hyper ẑ (ZDec.), time of
the synthesis transform in the decoding process (Inf.).

Testset Struc. Dec. YDec. ZDec. Inf.

Kodak (entire) × 96 54 2 40
Kodak (entire) ✓ 258 214 2 42
Kodak (partial) ✓ 149 106 2 41
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