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Figure 1. An illustration of our position map when dividing a
256× 256 image with 16× 16 patches.

A. Position Map

As shown in Fig. 1, we present the resulting position map
generated utilizing our default setting, in which a 256×256
image is subdivided into non-overlapping regions, each
with dimensions of 16× 16. Within the position map, indi-
vidual values signify particular distortion pattern classifica-
tions associated with the corresponding patches. Identical
values within the map imply that the respective patches ex-
hibit equivalent degrees of distortion.

B. Generalization to Non-square Images

By default, our method is trained and evaluated on
square-shaped fisheye images, following existing methods
in the field. Furthermore, we demonstrate the generalization
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Figure 2. Qualitative results of SimFIR on non-square fisheye im-
ages in high-resolution video surveillance scenarios.

capabilities of our method when applied to non-square im-
ages. As evidenced in Fig. 2, our SimFIR exhibits a robust
ability to effectively rectify these types of distorted images.
It is worth noting that these distorted images are commonly
encountered in high-resolution video surveillance scenar-
ios, further emphasizing the practical applicability of our
method in real-world situations.

C. More Qualitative Comparisons
In this section, we supplement more qualitative compar-

isons with existing methods, including SC [45], Blind [33],
DeepCalib [6], DR-GAN [35], DDM [36], MLC [34], and
PCN [55]. As shown in Fig. 3 and Fig. 4, the images recti-
fied by our method display reduced distortion while simul-
taneously preserving a greater degree of textural detail.
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Figure 3. Qualitative comparisons on real-world fisheye images. For each comparison, we show the distorted image, the rectified results
of SC [45], Blind [33], DeepCalib [6], DR-GAN [35], DDM [36], MLC [34], PCN [55], and our method. Besides, we magnify identical
regions from each image, to facilitate a more detailed comparison between the methods.
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Figure 4. Qualitative comparisons on real-world fisheye images. For each comparison, we show the distorted image, the rectified results of
SC [45], Blind [33], DeepCalib [6], DR-GAN [35], DDM [36], MLC [34], PCN [55], and our method.


