
Supplementary Material
The Stable Signature: Rooting Watermarks in Latent Diffusion Models

A. Implementation Details & Parameters

A.1. Details on the watermark encoder/extractor

Architectures of the watermark encoder/extractor. We
keep the same architecture as in HiDDeN [108], which is
a simple convolutional encoder and extractor. The encoder
consist of 4 Conv-BN-ReLU blocks, with 64 output filters,
3 × 3 kernels, stride 1 and padding 1. The extractor has 7
blocks, followed by a block with k output filters (k being
the number of bits to hide), an average pooling layer, and a
k × k linear layer. For more details, we refer the reader to
the original paper [108].

Optimization. We train on the MS-COCO dataset [47],
with 256× 256 images. The number of bits is k = 48, and
the scaling factor is α = 0.3. The optimization is carried out
for 300 epochs on 8 GPUs, with the Lamb optimizer [95]
(it takes around a day). The learning rate follows a cosine
annealing schedule with 5 epochs of linear warmup to 10−2,
and decays to 10−6. The batch size per GPU is 64.

Attack simulation layer. The attack layer produces
edited versions of the watermarked image to improve ro-
bustness to image processing. It takes as input the image
output by the watermark encoder xw = WE(xo) and out-
puts a new image x′ that is fed to the decoder W . This layer
is made of cropping, resizing, or identity chosen at random
in our experiments, unless otherwise stated. The param-
eter for the crop or resize is set to 0.3 or 0.7 with equal
probability. This is followed by a JPEG compression with
probability 0.5. The parameter for the compression is set to
50 or 80 with equal probability. This last layer is not dif-
ferentiable, therefore we back-propagate only through the
difference between the uncompressed and compressed im-
ages: x′ = xaug + nograd(xaug,JPEG − xaug) [101].

Whitening. At the end of the training, we whiten the out-
put of the watermark extractor to make the hard thresholded
bits independently and identically Bernoulli distributed on
vanilla images (so that the assumption of 3.1 holds better,
see App. B.5). We perform the PCA of the output of the wa-
termark extractor on a set of 10k vanilla images, and get the
mean µ and eigendecomposition of the covariance matrix
Σ = UΛUT . The whitening is applied with a linear layer
with bias −Λ−1/2UTµ and weight Λ−1/2UT , appended to
the extractor.

A.2. Image transformations

We evaluate the robustness of the watermark to a set of
transformations in sections 5, 6 and B.2. They simulate im-
age processing steps that are commonly used in image edit-
ing software. We illustrate them in Figure 9. For crop and
resize, the parameter is the ratio of the new area to the origi-
nal area. For rotation, the parameter is the angle in degrees.
For JPEG compression, the parameter is the quality factor
(in general 90% or higher is considered high quality, 80%-
90% is medium, and 70%-80% is low). For brightness, con-
trast, saturation, and sharpness, the parameter is the default
factor used in the PIL and Torchvision [53] libraries. The
text overlay is made through the AugLy library [60], and
adds a text at a random position in the image. The combined
transformation is a combination of a crop 0.5, a brightness
change 1.5, and a JPEG 80 compression.

A.3. Generative tasks

Text-to-image. In text-to-image generation, the diffusion
process is guided by a text prompt. We follow the stan-
dard protocol in the literature [65, 66, 69, 74] and evaluate
the generation on prompts from the validation set of MS-
COCO [47]. To do so, we first retrieve all the captions from
the validation set, keep only the first one for each image,
and select the first 1000 or 5000 captions depending on the
evaluation protocol. We use guidance scale 3.0 and 50 dif-
fusion steps. If not specified, the generation is done for
5000 images. The FID is computed over the validation set
of MS-COCO, resized to 512× 512.

Image edition. DiffEdit [13] takes as input an image, a
text describing the image and a novel description that the
edited image should match. First, a mask is computed to
identify which regions of the image should be edited. Then,
mask-based generation is performed in the latent space, be-
fore converting the output back to RGB space with the im-
age decoder. We use the default parameters used in the orig-
inal paper, with an encoding ratio of 90%, and compute a
set of 5000 images from the COCO dataset, edited with the
same prompts as the paper [13]. The FID is computed over
the validation set of MS-COCO, resized to 512× 512.

Inpainting. We follow the protocol of LaMa [82], and
generate 5000 masks with the “thick” setting, at resolution
512×512, each mask covering 1−50% of the initial image
(with an average of 27%). For the diffusion-based inpaint-
ing, we use the inference-time algorithm presented in [81],
also used in Glide [57], which corrects intermediate esti-
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Figure 9. Illustration of all transformations evaluated in sections 5 and 6.

mations of the final generated image with the ground truth
pixel values outside the inpainting mask. For latent diffu-
sion models, the same algorithm can be applied in latent
space, by encoding the image to be inpainted and down-
sampling the inpainting mask. In this case, we consider 2
different variations: (1) inpainting is performed in the la-
tent space and the final image is obtained by simply decod-
ing the latent image; and (2) the same procedure is applied,
but after decoding, ground truth pixel values from outside
the inpainting mask are copy-pasted from the original im-
age. The latter allows to keep the rest of the image perfectly
identical to the original one, at the cost of introducing copy-
paste artifacts, visible in the borders. Image quality is mea-
sured with an FID score, computed over the validation set
of ImageNet [16], resized to 512× 512.

Super-resolution. We follow the protocol suggested by
Saharia et al. [75]. We first resize 5000 random images from
the validation set of ImageNet to 128 × 128 using bicubic
interpolation, and upscale them to 512 × 512. The FID is
computed over the validation set of ImageNet, cropped and
resized to 512× 512.

A.4. Watermarking methods

For Dct-Dwt, we use the implementation of
https://github.com/ShieldMnt/invisible-watermark (the
one used in Stable Diffusion). For SSL Watermark [25] and
FNNS [42] the watermark is embedded by optimizing the
image, such that the output of a pre-trained model is close
to the given key (like in adversarial examples [30]). The
difference between the two is that in SSL Watermark we
use a model pre-trained with DINO [9], while FNNS uses
a watermark or stenography model. For SSL Watermark
we use the default pre-trained model of the original paper.
For FNNS we use the HiDDeN extractor used in all our
experiments, and not SteganoGan [103] as in the original
paper, because we want to extract watermarks from images

of different sizes. We use the image optimization scheme
of Active Indexing [24], i.e. we optimize the distortion
image for 10 iterations, and modulate it with a perceptual
just noticeable difference (JND) mask. This avoids visible
artifacts and gives a PSNR comparable with our method
(≈ 30dB). For HiDDeN, we use the watermark encoder
and extractor from our pre-training phase, but the extractor
is not whitened and we modulate the encoder output with
the same JND mask. Note that in all cases we watermark
images one by one for simplicity. In practice the water-
marking could be done by batch, which would be more
efficient.

A.5. Attacks

Watermark removal. The perceptual auto-encoders aim
to create compressed latent representations of images. We
select 2 state-of-the-art auto-encoders from the Compres-
sAI library zoo [6]: the factorized prior model [4] and
the anchor model variant [11]. We also select the auto-
encoders from Esser et al. [20] and Rombach et al. [68].
For all models, we use different compression factors to
observe the trade-off between quality degradation and re-
moval robustness. For bmshj2018: 1, 4 and 8, for
cheng2020: 1, 3 and 6, for esser2021: VQ-4, 8 and
16, for rombach2022 KL-4, 8, 16 and 32 (KL-8 being
the one used by SD v1.4). We generate 1k images from text
prompts with our LDM watermarked with a 48-bits key. We
then try to remove the watermark using the auto-encoders,
and compute the bit accuracy on the extracted watermark.
The PSNR is computed between the original image and the
reconstructed one, which explains why the PSNR does not
exceed 30dB (since the watermarked image already has a
PNSR of 30dB). If we compared between the watermarked
image and the image reconstructed by the auto-encoder in-
stead, the curves would show the same trend but the PSNR
would be 2-3 points higher.

https://github.com/ShieldMnt/invisible-watermark


Watermark removal (white-box). In the white-box case,
we assume have access to the extractor model. The adver-
sarial attack is performed by optimizing the image in the
same manner as [25]. The objective is a MSE loss between
the output of the extractor and a random binary message
fixed beforehand. The attack is performed for 10 iterations
with the Adam optimizer [41] with learning rate 0.1.

Watermark removal (network-level). We use the same
fine-tuning procedure as in Sec. 4.2. This is done for differ-
ent numbers of steps, namely 100, 200, and every multiple
of 200 up to 1600. The bit accuracy and the reported PSNR
are computed on 1k images of the validation set of COCO,
for the auto-encoding task.

Model collusion. The goal is to observe the decoded wa-
termarks on the generation when 2 models are averaged to-
gether. We fine-tune the LDM decoder for 10 different 48-
bits keys (representing 10 Bobs). We then randomly sample
a pair of Bobs and average the 2 models, with which we
generate 100 images. We then extract the watermark from
the generated images and compare them to the 2 original
keys. We repeat this experiment 10 times, meaning that we
observe 10× 100× 48 = 48000 decoded bits.

In the inline figure, the rightmost skewed normal is fitted
with the Scipy library and the corresponding parameters are
a : 6.96, e : 0.06, w : 0.38. This done over all bits where
Bobs both have a 1. The same observation holds when there
is no collusion, with approximately the same parameters.
When the bit is not the same between Bobs, we denote by

m
(i)
1 the random variable representing the output of the ex-

tractor in the case where the generative model only comes
from Bob(i), and by m2 the random variable representing
the output of the extractor in the case where the generative
model comes from the average of the two Bobs. Then in our
model m2 = 0.5 · (m(i)

1 +m
(j)
1 ), and the pdf of m2 is the

convolution of the pdf of m(i)
1 and the pdf of m(j)

1 , rescaled
in the x axis because of the factor 0.5.

B. Additional Experiments

B.1. Perceptual loss

The perceptual loss of (4) affects the image quality. Fig-
ure 10 shows how the parameter λi affects the image qual-
ity. For high values, the image quality is very good. For
low values, artifacts mainly appear in textured area of the
image. It is interesting to note that this begins to be prob-
lematic only for low PSNR values (around 25 dB).

Figure 10 shows an example of a watermarked image
for different perceptual losses: Watson-VGG [15], Watson-
DFT [15], LPIPS [105], MSE, and LPIPS+MSE. We set the
weight λi of the perceptual loss so that the watermark per-
formance is approximately the same for all types of loss,
and such that the degradation of the image quality is strong
enough to be seen. Overall, we observe that the Watson-
VGG loss gave the most eye-pleasing results, closely fol-
lowed by the LPIPS. When using the MSE, images are
blurry and artifacts appear more easily, even though the
PSNR is higher.

λi = 0.025 λi = 0.05 λi = 0.1

Original Watson-VGG Watson-DFT LPIPS MSE LPIPS + 0.1·MSE

Figure 10. Qualitative influence of the perceptual loss during LDM fine-tuning. (Top): we show images generated with the LDM auto-
encoder fine-tuned with different λi, and the pixel-wise difference (×10) with regards to the image obtained with the original model. PSNR
are 24dB, 26dB, 28dB from left to right. (Bottom): we change the perceptual loss and fix λi to have approximately the same bit accuracy
of 0.95 on the “combined” augmentation.



Table 5. Watermark robustness on different tasks and image transformations applied before decoding. We report the bit accuracy,
averaged over 10× 1k images generated with 10 different keys. The combined transformation is a combination Crop 50%, Brightness 1.5
and JPEG 80. More detail on the evaluation is available in the supplement A.3.

Task Image transformation

None Crop 0.1 JPEG 50 Resi. 0.7 Bright. 2.0 Cont. 2.0 Sat. 2.0 Sharp. 2.0 Text over. Comb.

Text-to-Image LDM [68] 0.99 0.95 0.88 0.91 0.97 0.98 0.99 0.99 0.99 0.92

Image Edition DiffEdit [13] 0.99 0.95 0.90 0.91 0.98 0.98 0.99 0.99 0.99 0.94

Inpainting - Full Glide [57] 0.99 0.97 0.88 0.90 0.98 0.99 0.99 1.00 0.99 0.93
Inpa - Mask only 0.89 0.76 0.73 0.77 0.84 0.86 0.89 0.91 0.89 0.78

Super-Resolution LDM [68] 0.98 0.93 0.86 0.85 0.96 0.96 0.97 0.98 0.98 0.92

B.2. Additional results on watermarks robustness

In Table 5, we report the same table as in Table 1 that
evaluates the watermark robustness in bit accuracy on dif-
ferent tasks, with additional image transformations. They
are detailed and illustrated in App. A.3. As a reminder, the
watermark is a 48-bit binary key. It is robust to a wide range
transformations, and most often yields above 0.9 bit accu-
racy. The resize and JPEG 50 transformations seems to be
the most challenging ones, and sometimes get bellow 0.9.
Note that the crop location is not important but the visual
content of the crop is, e.g. there is no way to decode the
watermark on crops of blue sky (this is the reason we only
show center crop).

B.3. Additional network level attacks

Tab. 6 reports robustness of the watermarks to differ-
ent quantization and pruning levels for the LDM decoder.
Quantization is performed naively, by rounding the weights
to the closest quantized value in the min-max range of every
weight matrix. Pruning is done using PyTorch [61] pruning
API, with the L1 norm as criterion. We observe that the net-
work generation quality degrades faster than WM robust-
ness. To reduce bit accuracy lower than 98%, quantization
degrades the PSNR <25dB, and pruning <20dB.

Table 6. Bit accuracy after network attacks, observed over 10×1k
images generated from text prompts.

Quantization (8-bits) 0.99 Pruning L1 (30%) 0.99
Quantization (4-bits) 0.99 Pruning L1 (60%) 0.95

B.4. Scaling factor at pre-training.

The watermark encoder does not need to be perceptu-
ally good and it is beneficial to degrade image quality dur-
ing pre-training. In the following, ablations are conducted
on a shorter schedule of 50 epochs, on 128 × 128 im-
ages and 16-bits messages. In Table 7, we train water-
mark encoders/extractors for different scaling factor α (see
Sec. 4.1), and observe that α strongly affects the bit accu-
racy of the method. When it is too high, the LDM needs to
generate low quality images for the same performance be-
cause the distortions seen at pre-training by the extractor are
too strong. When it is too low, they are not strong enough
for the watermarks to be robust: the LDM will learn how
to generate watermarked images, but the extractor won’t be
able to extract them on edited images.

B.5. Are the decoded bits i.i.d. Bernoulli random
variables?

The FPR and the p-value (2) are computed with the as-
sumption that, for vanilla images (not watermarked), the
bits output by the watermark decoder W are independent

Before whitening: After whitening: Bernoulli simulation:
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Figure 11. Covariance matrices of the bits output by the watermark decoder W before and
after whitening.
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Table 7. Influence of the (discarded) watermark encoder percep-
tual quality. P1,2 stands for Phase 1 or 2.

Scaling factor α 0.8 0.4 0.2 0.1 0.05

(P1) - PSNR ↑ 16.1 21.8 27.2 33.5 39.3
(P2) - PSNR ↑ 27.9 30.5 30.8 28.8 27.8

(P1) - Bit acc. ↑ on ‘none’ 1.00 1.00 0.86 0.72 0.62
(P2) - Bit acc. ↑ on ‘none’ 0.98 0.98 0.91 0.90 0.96
(P2) - Bit acc. ↑ on ‘comb.’ 0.86 0.73 0.82 0.81 0.69

and identically distributed (i.i.d.) Bernoulli random vari-
ables with parameter 0.5. This assumption is not true in
practice, even when we tried using regularizing losses in
the training at phase one [5, 72]. This is why we whiten the
output at the end of the pre-training.

Figure 11 shows the covariance matrix of the hard bits
output by W before and after whitening. They are com-
puted over 5k vanilla images, generated with our LDM at
resolution 512 × 512 (as a reminder the whitening is per-
formed on 1k vanilla images from COCO at 256 × 256).
We compare them to the covariance matrix of a Bernoulli
simulation, where we simulate 5k random messages of 48
Bernoulli variables. We observe the strong influence of the
whitening on the covariance matrix, although it still differs
a little from the Bernoulli simulation. We also compute the
bit-wise mean and observe that for un-whitened output bits,
some bits are very biased. For instance, before whitening,
one bit had an average value of 0.95 (meaning that it almost
always outputs 1). After whitening, the maximum average
value of a bit is 0.68. For the sake of comparison, the maxi-
mum average value of a bit in the Bernoulli simulation was
0.52. It seems to indicate that the distribution of the gen-
erated images are different than the one of vanilla images,
and that it impacts the output bits. Therefore, the bits are
not perfectly i.i.d. Bernoulli random variables. We however
found they are close enough for the theoretical FPR compu-
tation to match the empirical one (see next section) – which
was what we wanted to achieve.

B.6. Empirical check of the FPR

In Figure 3, we plotted the TPR against a theoretical
value for the FPR, with the i.i.d. Bernoulli assumption. The
FPR was computed theoretically with (2). Here, we em-
pirically check on smaller values of the FPR (up to 10−7)
that the empirical FPR matches the theoretical one (higher
values would be too computationally costly). To do so, we
use the 1.4 million vanilla images from the training set of
ImageNet resized and cropped to 512 × 512, and perform
the watermark extraction with W . We then fix 10 random
48-bits key m(1), · · · ,m(10), and, for each image, we com-
pute the number of matching bits d(m′,m(i)) between the
extracted message m′ and the key m(i), and flag the image
if d(m′,m(i)) ≥ τ .

Figure 12 plots the FPR averaged over the 10 keys, as a
function of the threshold τ . We compare it to the theoretical
one obtained with (2). As it can be seen, they match almost
perfectly for high FPR values. For lower ones (< 10−6),
the theoretical FPR is slightly higher than the empirical one.
This is a good thing since it means that if we fixed the FPR
at a certain value, we would observe a lower one in practice.

C. Additional Qualitative Results
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Figure 13. Qualitative results for different watermarking methods on generated images at resolution 512.
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Figure 14. Qualitative results on prompts of the validation set of MS-COCO, at resolution 512 and for a 48-bits signature. Images are
generated from the same latents, with original or watermarked generative models.
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Figure 15. Qualitative results for inpainting on ImageNet, with masks created from LaMa protocol [82], with original or watermarked
generative models. We consider 2 scenarios: (middle) the full image is modified to fill the masked area, (rigtht) only the masked area is
filled. Since our model is not fine-tuned for inpainting, the last scenario introduces copy-paste artifacts. From a watermarking point of
view, it is also the more interesting, since the watermark signal is only present in the masked area (and erased wherever the image to inpaint
is copied). Even in this case, the watermark extractor achieves bit accuracy significantly higher than random.
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Figure 16. Qualitative results for super-resolution on ImageNet, with original and watermarked generative models. Low resolution images
are 128× 128, and upscaled to 512× 512 with an upscaling factor f = 4.


