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B. Dataset Details
UCF-Crime [15] contains 1,900 (950 normal, 950 anoma-
lous) videos with 13 different crime-based anomalies, for
a total of 128 hours. The labels are included at the video
level, indicating whether or not the video contains at least
one anomalous event. The footage comes from real-life
CCTV surveillance cameras in a variety of scenes. The
average video contains 7,247 frames, which is ≈3 minutes
at 30fps. The training set has a total of 800 normal videos
and 810 anomalous videos, and the testing set has 150
normal and 140 anomalous videos. Both sets contain
examples of all anomaly categories, with some videos
having multiple anomalies.

XD-Violence [16] contains 4,754 (2405 normal, 2349
anomalous) videos with 6 different anomaly categories,
total 217 hours of untrimmed footage, making it the largest
weakly supervised video anomaly detection dataset. The
labels are also at the video level, except they allow for
each video to have more than one anomaly label. The
videos also contain audio signals to allow for multi-modal
anomaly detection. The videos are gathered from various
types of cameras, movies, and games, resulting in a unique
blend of scenes for increased difficulty. The training set
contains 3,954 videos while the test set has 800 videos
total, 500 anomalous and 300 normal.

ShanghaiTech [10] contains 437 videos in 13 different
scenes with a total of 130 anomalous events. The training
set includes 330 videos while the test set includes 107.
Out of a total of ≈317,400 frames in the dataset, 17,900
are anomalous. Each anomaly also contains a pixel-level
location for anomaly localization. It was published as an

VISPR1 [17, 4]

Label Description

a17 color skin color

a4 gender gender

a9 face complete full face visible

a10 face partial part of face visible

a12 semi nudity partial nudity

a64 rel personal shows personal relationship

a65 rel soci shows social relationship

Table 1: Privacy attributes from subset of VISPR [11] labels as
used in previous works.

unsupervised anomaly detection dataset, but Zhong et al.
[18] proposed a weakly supervised rearrangement, which
is used in this work.

VISPR [11] is a visual privacy image dataset containing
22k public Flickr images labelled with 68 different private
attributes. Private attributes are determined by personally
identifiable information as considered in the US Privacy
Act of 1974 and the EU Data Protection Directive 95/46/EC
[1]. The training and testings sets contain 10,000 and 8,000
images, respectively. For ease of comparison, we use the
same VISPR attribute split used in [17, 4], seen in Table 1.

UCF101 [14] contains 13,320 videos in 101 different
human action categories. In the default setting, split-1 is
used. Each video shows the action directly with no filler, so
the average video length is 7.21s.

Kinetics400 [7] is used as the standard video dataset for
action classifier pretraining. The dataset contains a total of
306,245 videos, with over 400 examples of each of the 400
human action classes.
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VISPR UCF-Crime XD-Violence ShanghaiTech
Method Privacy Anomaly Anomaly Anomaly

cMAP(%)(↓) AUC(%)(↑) AP(%)(↑) AUC(%)(↑)
Raw data 62.30 77.68 73.72 90.63
Downsample-2x 55.64 ↓10.69% 76.09 ↓2.05% 62.11 ↓15.75% 84.65 ↓6.60%
Downsample-4x 52.84 ↓15.18% 68.12 ↓12.31% 59.36 ↓19.48% 82.96 ↓8.46%
Obf-Blurring 58.68 ↓5.81% 75.69 ↓2.56% 59.36 ↓23.81% 89.63 ↓1.10%
Obf-Blackening 56.36 ↓9.53% 73.91 ↓4.85% 56.17 ↓26.74% 88.72 ↓2.11%
SPAct [4] 52.71 ↓15.39% 73.93 ↓4.83% 53.36 ↓27.62% 87.72 ↓3.21%
Ours 42.21 ↓32.25% 74.81 ↓3.69% 60.32 ↓18.18% 90.59 ↓0.04%

Table 2: Comparison with different privacy-preservation methods on UCF-Crime, XD-Violence and ShanghaiTech anomaly detection.
Bold indicates the best trade-off results. Trade-off plots are shown in main paper Fig. 3. Downward arrows ↓ and ↓ show the relative
percent change compared to the raw data.

C. Implementation Details
All code is implemented using the PyTorch [12] library.

C.1. Feature-level Privacy Leakage Tester

To test privacy leakage at the feature-level (main paper
Sec. 4.6), we create a simple fully connected model fP
consisting of 5 layers: Linear(2048, 2048) → Linear(2048,
1028) → Linear(1028, 1028) → Linear(1028, 512) → Lin-
ear(512, 7). This model is trained for 50 epochs with a
cross-entropy with logits loss and Adam [8] optimizer at
a learning rate of 1e-4. Images are augmented similar to the
test set images, then stacked 16 times to resemble a video
for feature extraction input. The set of 2048 dimensional
features Fanomaly from the I3D fT model is directly input
to this privacy leakage training model.

C.2. Anonymization Process

C.2.1 Input Augmentations

We utilize standard augmentations following [4]. During
training, we utilize random cropping, scaling, color jitter-
ing, erasing, and horizontal flipping. During inference, we
utilize center crop with a scale of 0.8.

C.3. MGFN

We use the official MGFN [3] implementation1 for
anomaly detection evaluation. Besides using only single
crop features instead of ten-crop, we use their exact hyper-
parameters. The residual feature norm for each segment is
appended with a weight of 0.1. To help mitigate potential
noise, the top-k clips are considered in the loss instead of
top-1, with k = 3. The feature dropout rate in training is
0.7. The optimizer employed is Adam [8], starting with a
learning rate of 0.001 with a weight decay of 0.0005, trained
for up to 1000 epochs with a batch size of 16.

1https://github.com/carolchenyx/MGFN

For reference, the compound MGFN loss function is:

LAD = Lsce + λ1Lts + λ2Lsp + λ3Lmc, (1)

where λ1 = λ2 = 1, and λ3 = 0.001.
The base loss starts with standard sigmoid cross entropy

loss:

Lsce = −ylog(si,j)− (1− y)log(1− si,j), (2)

where y is video-level label (y = 1 is anomaly, y = 0 is
normal), si,j is the computed anomaly score for frames i in
segment j.

Sultani et al. [15] proposed the use of a temporal
smoothness Lts =

∑(n−1)
i (f(V i

a )−f(V i+1
a ))2 and a spar-

sity term Lsp =
∑n

i f(V
i
a ), where f(V i

a ) is the extracted
features for segment i of anomalous video Va. These en-
courage infrequent anomaly detections and smoothness be-
tween representations of sequential video segments.

MGFN also includes a feature amplification mechanism
paired with a magnitude contrastive (MC) loss (Eq. 3) to
better enhance feature separability both within videos and
between videos. The MC loss is formulated as follows:

Lmc =

B/2∑
p,q=0

(1− l)(D(Mp
n,M

q
n)) +

B∑
u,v=B/2

(1− l)(D

(Mu
a ,M

v
a )) +

B/2∑
p=0

B∑
u=B/2

l(Margin−D(Mp
n,M

u
a )),

(3)

where B is the batch size, M is the feature magnitude of the
corresponding segment, D(·, ·) is a distance function, and l
is an indicator function. For more details about this loss,
refer to [3].

C.4. Privacy Evaluation

To evaluate the privacy leakage of each anonymizer fA,
we train a ResNet50 [6] model fB in a supervised man-
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Figure 1: UCF-Crime classwise AUC performance comparison between raw and anonymized videos.
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Figure 2: XD-Violence classwise AUC performance comparison between raw and anonymized videos.

ner to predict whether every input VISPR image contains
each of the 7 private attributes from the split shown in Ta-
ble 1. Training lasts for up to 100 epochs, stopping early
if the learning rate drops to 1e-12. Learning rate starts
at 1e-3, dropping to 1/5 of its current value on a training
epoch where the loss does not decrease. Given an image
Ii ∈ Dprivacy, our baseline evaluates on fB(I

i), with sub-
sequent experiments passing each image before evaluation,
fB(fA(I

i)).

D. Results

D.1. Quantitative Results

Table 2 compares different privacy-preserving methods
and their effect on downstream anomaly detection perfor-
mance. Notably, our utility loss modification allows our
anonymizer to remove more privacy and improve utility
performance when compared to previous methods. Com-
pared to prior best method [4], our method is able to re-
move 19.9% more privacy with a slightly better utility score
(1.19%).

We present class-wise performance for the anomaly de-
tection in Fig. 1 and 2. We also show frame-level prediction
scores for the anomaly detection task in Fig. 3.
Effect of temporal invariance during anonymization
training: Temporal invariance objective is conceptually op-
posite to temporal distinctiveness objective. With invari-

ance, the learned representations are encouraged to be sim-
ilar across the temporal dimension. Temporal invariance is
implemented using the formulation from [13]. Let x(i)

t1 and
x
(i)
t′ be the two randomly sampled clips of a video instance

X(i). Passing such clips through utility model fT and a
non-linear projection head , we get their representations z(i)t′

and z
(i)
t′ . Now the goal of the temporal invariance is to in-

crease the mutual agreement between these two representa-
tions while maximizing the disagreement between the rep-
resentation of clips of other video instances j, where j ̸= i.
This can be expressed as following equation:

LI = −
B∑
i=1

log
h
(
z
(i)
t , z

(i)
t′

)
B∑

j=1

[1[j ̸=i]h(z
(i)
t , z

(j)
t ) + h(z

(i)
t , z

(j)
t′ )]

,

(4)
where h(u1,u2) = exp

(
u1

Tu2/(∥u1∥∥u2∥τ)
)

is used to
compute the similarity between u1 and u2 vectors with an
adjustable temperature parameter τ = 0.1, B is batchsize.
1[j ̸=i] ∈ {0, 1} is an indicator function which equals 1 iff
j ̸= i.

We perform experiments by modifying our utility loss to
LT = LCE + ω ∗ LI , where ω is a loss weight.

In order to ensure that our invariance baseline is strong
enough we perform several experiments varying different
ω in Table 3. This demonstrates that temporal invariance



Figure 3: Frame-level anomaly score plot for video Robbery137 x264.mp4 from UCF-Crime. Green line shows our anonymized
model, red line is the raw input model, both compared to the blue ground truth line. The below visualizations shows uniformly sampled
frames from the video.

is not well-aligned with the anomaly detection utility task.
For insights, look to main paper Sec. 4.

Temporal VISPR UCF-Crime
Invariance Privacy Anomaly
Loss Weight ω cMAP(%)(↓) AUC(%)(↑)
0 52.71 73.93
0.1 51.62 69.35
0.5 46.51 65.84
1.0 45.64 69.52
2.0 52.2 64.4

Table 3: Comparison of using different loss weights of the tempo-
ral invariance contrastive loss during the anonymization process.
Bold indicates best trade-off.

Effectiveness of different fT architectures: For all exper-
iments in the main paper, we follow previous works and
use I3D [2]. Table 4 shows experiments with different fT
architectures to ensure that our anonymization function is
suitable for varying architectures. Since the downstream
anomaly detection task relies on input features, it is impor-
tant to note that our I3D implementation outputs features
of dimensionality 2048, while MViTv2 [9] and R3D-18 [5]
output 768 and 512, respectively. These experiments used
the same hyperparameters as our best I3D experiment, the

models may achieve a better trade-off with hyperparameter
tuning.

fT VISPR UCF-Crime
Model Privacy Anomaly
Architecture λ cMAP(%)(↓) AUC(%)(↑)
I3D 42.21 74.81
MViTv2 24.21 69.22
R3D-18 33.58 70.67

Table 4: Comparison of different fT architectures for both the
proxy utility task and feature extraction.

D.2. Qualitative Results

We present qualitative results of our anonymization
function in Fig. 4 and 5. More visualization can be found
in the attached videos of the supplementary material.

D.3. Training Progression

We show outputs of our anonymization framework at dif-
ferent epochs of anonymization training in Fig. 6 and 7.
We can clearly observe that as the training progresses, our
framework is able to anonymize better.



Figure 4: Visualization of anomalous clip (shooting) from XD-Violence dataset video
Fast.Furious.6.2013 #00-45-40 00-47-13 label B2-0-0.mp4.

Figure 5: Visualization of anomalous clip (skateboard passing) from ShanghaiTech dataset video 08 0178.avi.



Figure 6: Training progression per epoch of the anonymization process. In order from top to bottom, visualization after fA on epoch 1, 6,
9, 12, 15, and 20 is shown.



Figure 7: Training progression per epoch of the anonymization process. In order from top to bottom, visualization after fA on epoch 1, 6,
9, 12, 15, and 20 is shown.
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