
Distribution-Aligned Diffusion for Human Mesh Recovery
(Supplementary)

Lin Geng Foo1 Jia Gong1 Hossein Rahmani2 Jun Liu1†

1Singapore University of Technology and Design 2Lancaster University
{lingeng foo,jia gong}@mymail.sutd.edu.sg, h.rahmani@lancaster.ac.uk, jun liu@sutd.edu.sg

1. More Experiments
Here, we provide more experiments and analyses. Re-

sults are reported for 3DPW.
Visualization of the distribution denoising. In Fig. 1,

we visualize the step-by-step denoising of the distributions
of our method with DAT and without DAT. Using DAT, we
can quickly reach the input-specific manifold, where the
distribution resembles the target distribution, which shows
our method can converge fast with DAT.

𝒌 = 𝟏𝟓𝟎 𝒌 = 𝟏𝟎𝟎 𝒌 = 𝟓𝟎 𝒌 = 𝟎

Ground Truth

HM
Di

ff
w

/o
 D

AT
HM

Di
ff

w
 D

AT

Figure 1. Visualization for DAT. For simplicity, we only show the
distribution of a part of the mesh vertices.

Evaluation on occlusion benchmark. To further eval-
uate the effectiveness of our method in reducing uncer-
tainty, we conduct additional experiments following [14, 6].
Specifically, we evaluate our method on 3DPW-PC [6],
which is a subset of the 3DPW dataset and contains many
occluded samples with high levels of uncertainty. As shown
in Tab. 1, our method significantly outperforms existing
methods and achieves state-of-the-art results, which shows
the effectiveness of our method at handling uncertainty.

Table 1. Comparison on occlusion setting.
Method MPVE MPJPE PA-MPJPE
[14] 152.8 119.7 79.7
[6] 149.6 117.5 77.1
Ours 143.1 114.2 73.5

Impact of the total number of diffusion steps K and
number of samples N . To further investigate our HMDiff,

† Corresponding author

we also conduct additional ablation experiments that vary
the total number of diffusion steps K and number of sam-
ples N . From Fig. 2, we can observe that the quality of
the reconstructed human mesh tends to improve when K is
increased, and shows only minor improvements when K is
above 200. Besides, we also find that the output mesh qual-
ity improves when we increase the number of samples N till
N = 25, and stays roughly consistent thereafter. Therefore,
we set K = 200 and N = 25.

Figure 2. Evaluation of hyperparameters K and N .

More visualization results. In Fig. 2 of the main paper,
we displayed some qualitative results of our method. Here,
we visualize more examples in Fig. 3. These examples show
that our method effectively recovers the human mesh even
in scenarios with high uncertainty, such as occlusions and
background noise.

Impact of acceleration technique. In our work, we
accelerate the reverse diffusion process via the accelera-
tion technique from DDIM [13], which uniformly skips
diffusion steps. For more implementation details, refer to
Sec. 3.2 of Supplementary. Our experiment results are pre-
sented in Tab. 2. As shown in Tab. 2, when we adopt the
acceleration technique, the efficiency improves (i.e., FPS
increases significantly), while the performance is similar.

Table 2. Evaluation of acceleration technique.
Method MPVE MPJPE PA-MPJPE FPS
Ours w/o acc 82.1 72.3 44.1 5
Ours w/ acc 82.4 72.7 44.5 18

Human3.6M human body with self-occlusion

3DPW human body with noisy background

3DPW human body with object-occlusion

Figure 3. More visualization of human mesh outputs using our method.

Impact of DAT threshold r. In Fig. 4, we evaluate the
impact of different settings of the DAT threshold r. By de-
creasing r starting from r = 1 (which is equivalent to not
using DAT), we observe that performance steadily improves
to a peak at around r = 0.05, and then slightly drops. This
is because, when r is high, decreasing r will lead to the
distribution Hk getting aligned closer to U and H0 (be-
fore DAT is deactivated), thus it will benefit performance.
However, when r is already small (e.g., r = 0.05), decreas-
ing r further will cause Hk to align towards U even at the
later steps (when Hk is already relatively accurate and cer-
tain). Since the prior distribution U contains uncertainty
and noise, this alignment between Hk and U at the later
steps will not benefit the performance. Therefore, we fix
the threshold r at 0.05.

Figure 4. Evaluation of the threshold r.

2. Discussion on Theoretical Aspects

In this section, we discuss some of the theoretical aspects
related to our work.

Rather than directly minimizing the gap between
hk and U by using the gradient ∇hk

log p(U |hk),
we instead compute the Distribution Alignment Gradi-
ent ∇hk

log p(U |ĥ0(hk)) by using ĥ0 as an intermedi-
ate step (as mentioned in Sec. 4.2 of the main pa-
per). Specifically, we draw N samples from U (i.e.,
ui ∼ U) and take an update to minimize the sum
of L2 norms between {ui}Ni=1 and f(ĥ0(hk)). In
other words, we represent ∇hk

log p(U |ĥ0(hk)) with∑N
i=1 ∇hk

log p(ui|ĥ0(hk)). We remark that the theoret-
ical bounds of using p(u|ĥ0(hk)) to approximate p(u|hk)
have been well-explored in [4].

Furthermore, following up upon the thermodynamics
analogy used in our paper, more theoretical aspects regard-
ing the thermodynamics analogy can be found in [12]. For
instance, upper and lower bounds on the entropy of each
reverse diffusion step have been derived in [12].

3. More Details

3.1. More network architecture details

In Sec. 4.3 of the main paper, we presented the main
aspects of our network architecture. Here, we describe our
network architecture in more detail.

Image feature fI . Firstly, we go into more details re-
garding how we encode positional information for the im-
age feature fI , which is important for the transformer-based
diffusion model g. Recall that we first extract a context fea-
ture fc ∈ R2048×7×7 from our CNN backbone ϕI . Then,
we perform average pooling on fc and flatten it, to obtain a
feature of shape 128 × 49. To encode positional informa-
tion, we generate a position encoding map Es ∈ R128×49 –
which is generated by the sinusoidal function – to add to the
feature. Specifically, for the position encoding map Es, at
each index i ∈ [1, ..., 49], Es[i] is a vector of length 128. At
each even (2j) index of Es[i], we set the element Es[i, 2j]
to sin(i/492j/128), while at each odd (2j+1) index, we set
the element Es[i, 2j+1] to cos(i/492j/128). After the posi-
tion encoding map Es is added, we obtain the image feature
fI ∈ R128×49, which contains rich semantic features (and
positional information) and is fed to the diffusion model g
at every step.

Pose estimator head ϕP . Our 3D pose estimator head
ϕP (along with our CNN backbone ϕI) are obtained off-
the-shelf from [15], where they have been pre-trained on
Human3.6M [5], UP-3D [7], MuCo-3DHP [11], COCO
[10] and MPII [1]. Overall. we utilize ϕP to generate
an xy heatmap Ex,y ∈ RJ×56×56 and a depth heatmap
Ez ∈ RJ×56×56, where J is the number of joints. We fol-
low previous works [2, 9, 8] to set J = 14. The pose esti-
mator head ϕP is a lightweight module consisting of three
de-convolutional layers, in which the input feature shape in
each layer is 7×7×1024, 14×14×512, and 28×28×256
respectively.

Next, we present how to obtain a 3D human pose dis-
tribution U from ϕP to guide the reverse diffusion pro-
cess. We note that ϕP allows us to generate an xy heatmap
Ex,y ∈ RJ×56×56 and a depth heatmap Ez ∈ RJ×56×56,
where J is the number of joints. Then, we normalize the ob-
tained heatmaps. These normalized heatmaps can naturally
be regarded as a probability map that characterizes the dis-
tribution of predicted 3D human pose. In implementation,
to efficiently calculate the distribution gap between U and
the intermediate distribution Hk, we sample 25 3D human
poses based on these heatmaps to approximate U .

Diffusion step embedding Ek
d . Moreover, to assist the

diffusion model to learn the reverse diffusion process effec-
tively, we also build a diffusion step embedding Ek

d ∈ R61

for each k-th diffusion step. Specifically, at each even (2j)
index of Ek

d , we set the element Ek
d [2j] to sin(k/2002j/61),

while at each odd (2j + 1) index, we set the element

Ek
d [2j + 1] to cos(k/2002j/61).
Diffusion model g. Overall, as described in Sec. 4.3

of the main paper, our diffusion network g is transformer-
based and consists of a single vertex self-attention layer,
a single vertex-image cross-attention layer, and a linear
layer. V vertex tokens {x1, x2, ..., xV } are input to the
network, where each token xv ∈ R128 represents the vth

vertex of the sample hk at step k. When the V vertex
tokens {x1, x2, ..., xV } are input to the network, the ver-
tex self-attention layer performs the self-attention opera-
tion with an adjacency matrix to generate the intermedi-
ate tokens {b1, b2, ..., bV }. Then, the vertex-image cross-
attention layer performs the cross-attention operation be-
tween {b1, b2, ..., bV } and fI . Specifically, fI ∈ R128×49 is
treated as 49 tokens of length 128, and this cross-attention
mechanism takes {b1, b2, ..., bV } as the query components
and fI tokens as the key and value components. Next,
we take the output of the cross-attention layer (of shape
V × 128), and feed it into a linear layer to predict hk−1 ∈
RV×3. Then, we modify hk−1 via DAT (if it is activated).

MLP. Finally, after the K diffusion steps, we obtain the
high-quality mesh distribution H0, which is represented by
N samples (h0). We take the mean of H0 by averaging the
N samples, and feed it into a 3-layer MLP to obtain the final
prediction hm. More specifically, the MLP takes in a coarse
human mesh sample R431×3 and outputs a fine-grained one
R1723×3.

3.2. More implementation details

In the forward diffusion process, we set the number of
total diffusion steps K at 200 and generate the decreasing
sequence α1:K via the formula:

αk =

k∏
i=1

(1− βi) (1)

where β1:K is a sequence from 1e − 4 to 2e − 2, which is
interpolated by the linear function. Moreover, we utilize the
acceleration technique DDIM [13] to speed up our diffusion
inference procedure. Specifically, we accelerate our diffu-
sion process by tuning the value of σk in Eq. 6 in the main
paper to skip a certain number of reverse diffusion steps.
Following [13], for each k-th step, we generate the acceler-
ation metric σk via the formula below:

σk = η ·

√
(1− αk

αk+ni+1
) · (1− αk+ni+1)

1− αk
, (2)

where ni is the number of skipped steps between the cur-
rent and next diffusion step, and η is the hyperparameter
that controls the variance of σk. In our implementation, we
follow [13] to set η to 0.8 and ni to 4.

Our method is implemented using PyTorch, and can be
trained on a powerful workstation with four NVIDIA RTX
A5000 GPU cards within 48 hours.

In our forward and reverse process, we add noise to the
mesh vertex coordinates and denoise the mesh vertex coor-
dinates respectively. In both of these processes, the topol-
ogy of the mesh vertices stays fixed. In other words, to link
the mesh vertices together to produce the mesh surfaces, we
follow previous works [2, 9] to define an adjacency matrix
between the vertices, and this adjacency matrix is kept fixed
throughout the diffusion process.

3.3. More training details

Learning Mesh Geometry. To reconstruct an accurate
and natural human mesh, we also optimize our diffusion
model via geometric constraints of human mesh. As men-
tioned in Sec. 4.4 of our main paper, following previous
work [3, 8, 9], we optimize our model by incorporating four
kinds of losses to learn the mesh geometry: 3D Vertex Re-
gression Loss Lv , 3D Joint Regression Loss Lj , Surface
Normal Loss Ln, and Surface Edge Loss Le.

Specifically, we obtain the estimate of diffusion target ĥ0

at each diffusion step and then utilize these losses to opti-
mize the diffusion model. Below we introduce more details
regarding each loss.

3D Vertex Regression Loss Lv is used to optimize our
model to learn how to regress 3D mesh vertices. It is com-
puted by:

Lv =
1

V
∥ĥ0 − h0∥1, (3)

where V is the number of vertices and h0 ∈ RV×3 denotes
the ground-truth 3D vertex coordinates.

We can also regress 3D joints ĥj
0 from the estimated

mesh ĥ0 via a linear mesh-to-pose function f . Thus, we
can also use a 3D Vertex Regression Loss Lj to train our
model for the regression of 3D body joints. Specifically,
this loss (Lj) applies an L1 loss, and is computed by:

Lj =
1

J
∥ĥj

0 − hj
0∥1, (4)

where J is the number of joints and hj
0 denotes the ground-

truth 3D joint coordinates.
Moreover, we optimize our model to reconstruct a con-

sistent mesh surface via a Surface Normal Loss Ln, which
is defined as follows:

Ln =
∑
t

∑
{i,j}⊂t

∣∣∣〈 vi − vj

∥vi − vj∥2
, n∗

t

〉∣∣∣, (5)

where t and n∗
t denote a triangle face in the human mesh

and the ground-truth unit normal vector of t respectively;
⟨·, ·⟩ denotes a dot product, and vi denotes the i-th vertex in
t.

Finally, we utilize a Surface Edge Loss Le to smooth the
surfaces with dense vertices, such as face, hand and feet,

The loss Le is formulated as:

Le =
∑
t

∑
{i,j}⊂t

|∥vi − vj∥2 − ∥v∗
i − v∗

j∥2|, (6)

where t and the asterisk (*) denote a triangle face in the hu-
man mesh and the ground-truth respectively, and vi denotes
the i-th vertex in t.

In this paper, we follow previous work [3] to set the loss
coefficient values as: λv = 0.1, λj = 1, λn = 0.0001 and
λe = 0.005.

References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages
3686–3693, 2014. 3

[2] Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh. Cross-
attention of disentangled modalities for 3d human mesh re-
covery with transformers. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part I, pages 342–359. Springer, 2022.
3, 4

[3] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.
Pose2mesh: Graph convolutional network for 3d human pose
and mesh recovery from a 2d human pose. In European Con-
ference on Computer Vision, pages 769–787. Springer, 2020.
4

[4] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mc-
cann, Marc Louis Klasky, and Jong Chul Ye. Diffusion pos-
terior sampling for general noisy inverse problems. In In-
ternational Conference on Learning Representations, 2023.
2

[5] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE transactions on pattern analysis and machine intelli-
gence, 36(7):1325–1339, 2013. 3

[6] Rawal Khirodkar, Shashank Tripathi, and Kris Kitani. Oc-
cluded human mesh recovery. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 1715–1725, 2022. 1

[7] Christoph Lassner, Javier Romero, Martin Kiefel, Federica
Bogo, Michael J Black, and Peter V Gehler. Unite the peo-
ple: Closing the loop between 3d and 2d human representa-
tions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6050–6059, 2017. 3

[8] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1954–1963, 2021. 3, 4

[9] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12939–12948, 2021.
3, 4

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 3

[11] Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll,
and Christian Theobalt. Single-shot multi-person 3d pose
estimation from monocular rgb. In 2018 International
Conference on 3D Vision (3DV), pages 120–130. IEEE,
2018. 3

[12] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
2

[13] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2021. 1, 3

[14] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Michael J Black, and Tao
Mei. Monocular, one-stage, regression of multiple 3d people.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 11179–11188, 2021. 1

[15] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution repre-
sentation learning for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 43(10):3349–
3364, 2020. 3

