
Supplementary Materials

A. Using the infoNCE Loss

The infoNCE loss is an effective self-supervised
learning technique to learn intermediary representa-
tions, but why apply it to quantization?

We find, both experimentally (in Fig. 5 of main pa-
per) and qualitatively in Fig. 8, that the infoNCE loss
provides better results than existing loss functions for
global quantization. To perform global quantization,
we try to minimize a loss between the quantized and
full precision outputs given by:

argmin
∆

L
(
xQ(∆), xFP

)
(1)

where xQ(∆) is the quantized prediction parame-
terized by quantization scales ∆, and xFP is the full
precision prediction. It may seem reasonable to use the
mean-squared error (MSE) or cosine similarity as a loss
function in this setup. Unfortunately, PTQ methods
only have access to a small calibration dataset, making
it very easy for these loss functions to overfit to the
few predictions available. The infoNCE loss combats
this by using negative samples to encourage dissimi-
larity between xQ and other predictions in the batch.
We can see in Fig. 8a that the infoNCE loss provides
a smoothing effect when compared to the MSE loss.
The infoNCE loss has a flatter minima which aids in
generalization to the unknown test distribution.

Additionally, Hessian-based loss functions allow for
second order gradient information, however, they must
be estimated using some form of approximation such
as the Fisher loss used in BRECQ [6]. In Fig. 8b, we
find the Fisher estimation to be noisy, and furthermore,
does not accurately represent the underlying test loss
landscape. The Fisher loss is an empirical estimation,
and is a poor approximation when the training distri-
bution does not match the test data distribution [5].
We find that the infoNCE loss performs much better
since it does not rely on any gradient approximation,
and more closely resembles the test loss. In Fig. 8b,
we can see that the infoNCE and Fisher losses share
a similar minimum, but the infoNCE provides a flat-
ter neighborhood around the minimum which is more
robust to data distribution shift [4, 3]. As discussed

above, the infoNCE loss encourages diversity of rep-
resentations by encouraging dissimilarity between pre-
dictions.

(a) Comparison of the test loss landscape with
MSE and infoNCE loss landscapes.

(b) Comparison of the test loss landscape with
Fisher and infoNCE loss landscapes.

Figure 8: Evaluating loss functions on ResNet-18. The
infoNCE loss closely resembles the test loss (in red). In
comparison, the MSE and Fisher loss are less smooth
and do not accurately represent the test loss.

B. Ablation: Passes vs. Cycles

In Fig. 9, we ablate the number of passes, P , from
1 to 35. As we can see, a majority of the accuracy
improvement occurs in the first 10 passes, so we choose



P = 10 for all experiments above. This allows for our
method to run in less than one hour. However, we note
that an additional accuracy boost may be enjoyed with
more passes.

Figure 9: Ablation on number of cycles and passes.

We also ablate the number of cycles, C, to determine
how many mutations should occur per block. We use
C = 3 even though we see C = 7 is optimal in our
ablation study. In practice, we find that the choice of
C is random seed and model dependent. We find that
for some runs, the best choice is simply 1 cycle, but in
others it is 3, 5 or 7. Ultimately, we choose C = 3 for
consistency across experiments.

C. Ablation on Calibration Set Size

As the calibration dataset increases, we’d expect
better performance for our PTQ method. However,
Fig. 10 suggests that a 512 images yields the highest
performance, whereas 2,000 and 5,000 images makes
performance worse than FQ-ViT (which uses 1,000 cal-
ibration images). This is likely an artifact of the way
we implement contrastive loss.

When we apply contrastive loss on a batch of images,
the contrastive loss minimizes the distance to the cor-
responding full precision prediction, but maximizes the
dissimilarity across all other images, regardless of the
whether of not the other images are in the same class.
Ideally, we want to avoid maximizing the dissimilar-
ity within a class, so a smaller calibration dataset will
minimize the likelihood of two images belonging to the
same class.

We use 1,000 images in this paper as in prior work,
however, accuracy may be improved by using only 512
images. Alternatively, a labelled calibration set may
allow the contrastive loss to ignore other images be-
longing to the same class.

Figure 10: Ablation on Evol-Q’s calibration dataset for
sizes 128 to 5,000.

D. On Variation across Random Seeds

In Fig. 11, we show the performance of Evol-Q com-
pared to the baseline method, FQ-ViT. Across twelve
random seeds, ten runs improve performance over FQ-
ViT, and three result in top-1 accuracy that is superior
to the full precision model.

The random seed dictates which images are chosen
for the calibration dataset, and we attribute the poor
accuracy in seeds 4 and 5 to the poor choice of calibra-
tion set. This is a limitation of PTQ methods which
rely on a calibration dataset, and so we employ a con-
trastive loss to combat overfitting (we can only mini-
mize it’s effect and not eliminate it).

Figure 11: Comparing performance across 12 random
seeds for 8W8A ViT-Base. 10/12 runs improve over
the initial FQ-ViT quantization.

E. Impact on Attention Maps

We find that Evol-Q preserves the spatial integrity
of the full precision feature maps even as quantization



Figure 12: Attention maps for different quantization levels. Evol-Q’s quantized models preserve the spacial locality
of the full precision feature map. As the quantization level becomes more extreme, the attention map becomes
subject to decreased resolution.

forces discretization of the attention mechanism. In
Fig. 12, as quantization becomes more severe from 8-bit
to 3-bit, the resolution of the feature map degrades, as
is expected when only a finite number of values can be
expressed in the quantized scheme. This attention map
visualization is averaged over all blocks, and serves as
qualitative inspection of how the quantized network’s
attention mechanism is performing. All in all, Fig. 12
provides confidence that Evol-Q’s quantized attention
maps learn reasonable representations of the original
full precision network.

F. Layer-wise Weight Distributions

The weight distributions for ViT-Base’s projection
layers are shown in Fig. 14. To recap, the projection
layer is the final linear layer of each attention block1.

The beauty of Evol-Q is in its global optimization
strategy – learning quantization scales with respect to
a global objective allows Evol-Q to choose scales for
the intermediary layers which improve quantization for
other layers. FQ-ViT may approximate the full pre-
cision weight distribution well, however, a matching
layer-wise distribution may not translate to overall per-
formance gain. As explained in the main paper, a small
perturbation in quantization scale can reap a huge ac-
curacy gain. We can see that Evol-Q’s layer-wise distri-
butions are not very different than FQ-ViT, yet Evol-
Q has a 0.15% accuracy improvement over FQ-ViT for
ViT-Base. In summary, we find that Evol-Q’s slight
adjustment in quantization scale can greatly improve
accuracy.

Please refer to the last page for Fig. 14.

1WO in Pytorch’s torch.nn.MultiheadAttention()

Figure 13: Runtime vs. Accuracy for 4-bit DeiT-Small
using existing vision transformer techniques. We com-
pare PTQ methods (blue) and QAT methods (red) on
the same plot and show that Evol-Q is on the Pareto
front. We estimate runtime for PSAQ-ViT-V2 [7] and
OFQ [8], and indicate uncertainty using error bars.

G. Pareto Front for 4-bit DeiT-Small

Since most methods report 4-bit weights for DeiT-
Small, we compare these methods in terms of both run-
time & accuracy. In Fig. 13 we illustrate tradeoff be-
tween runtime and accuracy for PTQ and QAT meth-
ods. In comparison to 8-bit ViT-Base (Fig. 7 in the
main paper), this figure includes QAT results which are
unavailable in the 8-bit setting. We estimate runtime
for PSAQ-ViT-V2 [7] and OFQ [8], since they do not
open-source their code, nor report runtime. Evol-Q is
on the Pareto curve (note x-axis is log scale), and has
the best accuracy of all PTQ methods. Still, there is a



3-bit weights, 8-bit activations (3W8A)
Method DeiT-T DeiT-S DeiT-B ViT-B

FQ-ViT 35.79 60.58 72.11 55.33
+ OMSE 52.03 65.27 75.00 62.83
+ Bias Corr 56.17 68.53 77.57 73.27

Evol-Q (ours) 58.93 69.93 78.40 75.00

(a) 3-bit weights, 8-bit activations

4-bit weights, 8-bit activations (4W8A)
Method DeiT-T DeiT-S DeiT-B ViT-B

FQ-ViT 66.91 76.93 79.99 78.73
+ OMSE 66.03 77.17 80.30 78.90
+ Bias Corr 67.27 78.03 80.43 79.37

Evol-Q (ours) 68.47 78.30 81.07 80.37

(b) 4-bit weights, 8-bit activations

8-bit weights, 8-bit activations (8W8A)
Method DeiT-T DeiT-S DeiT-B ViT-B

FQ-ViT 71.61 79.17 81.20 83.30
+ OMSE 72.17 80.30 82.17 82.47
+ Bias Corr 72.33 79.87 82.07 82.43

Evol-Q (ours) 72.37 80.33 82.47 84.40

(c) 8-bit weights, 8-bit activations

Table 1: We add OMSE quantization and Bias Correc-
tion (Bias Corr) on top of FQ-ViT. Finally, we apply
Evol-Q on top of all three methods to achieve state-of-
the-art PTQ quantization. We show results for 3W8A,
4W8A, 8W8A in Tab. 1a, Tab. 1b, and Tab. 1c respec-
tively.

performance gap (∼ 2.5−3%) when compared to QAT
methods, illustrating that there is room to improve for
PTQ methods.

H. Adding Bias Correction and OMSE

OMSE quantization [2] and Bias Correction [1] are
statistical techniques we can use to improve quanti-
zation performance. We apply them on the original
FQ-ViT model, and then use Evol-Q to achieve state-
of-the-art PTQ performance. In Tab. 1 (last page), we
can see the benefits of applying OMSE and Bias Cor-
rection techniques and how adding Evol-Q on top of
these can boost performance even more.

In this paper, we have shown how Evol-Q can boost
performance in a variety of scenarios and does not re-
quire a cherry-picked setting. We show that Evol-Q
works on top of BRECQ for CNNs, FQ-ViT for ViTs,
and even works in this setting, where we boost FQ-
ViT’s accuracy by adding Bias Correction and OMSE.

In summary, we are confident that Evol-Q’s novel
optimization method in conjunction with evaluating

small scale perturbations is orthogonal to other quanti-
zation methods and can be used in a variety of scenarios
to improve accuracy.

References

[1] Ron Banner, Yury Nahshan, and Daniel Soudry. Post
training 4-bit quantization of convolutional networks
for rapid-deployment. Advances in Neural Information
Processing Systems, 32, 2019. 4

[2] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel
Kisilev. Low-bit quantization of neural networks for
efficient inference. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW),
pages 3009–3018. IEEE, 2019. 4

[3] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization.
arXiv preprint arXiv:1803.05407, 2018. 1

[4] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Gener-
alization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016. 1

[5] Frederik Kunstner, Philipp Hennig, and Lukas Balles.
Limitations of the empirical fisher approximation for
natural gradient descent. Advances in neural informa-
tion processing systems, 32, 2019. 1

[6] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang,
Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training
quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021. 1

[7] Zhikai Li, Mengjuan Chen, Junrui Xiao, and Qingyi
Gu. Psaq-vit v2: Towards accurate and general data-
free quantization for vision transformers. arXiv preprint
arXiv:2209.05687, 2022. 3

[8] Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng.
Oscillation-free quantization for low-bit vision trans-
formers. arXiv preprint arXiv:2302.02210, 2023. 3



(a) Block #0 (b) Block #1 (c) Block #2

(d) Block #3 (e) Block #4 (f) Block #5

(g) Block #6 (h) Block #7 (i) Block #8

(j) Block #9 (k) Block #10 (l) Block #11

Figure 14: Weight distributions for the projection layers of all attention blocks for ViT-Base. The 12 blocks are
numbered from 0-11, with block #1 being the same as reported in Fig. 4 of the main paper. Evol-Q (green) has
a 0.15% Top-1 accuracy improvement over FQ-ViT (yellow).


