
ASAG: Building Strong One-Decoder-Layer Sparse Detectors
via Adaptive Sparse Anchor Generation

Shenghao Fu1,3,4, Junkai Yan1,4, Yipeng Gao1,4, Xiaohua Xie1,3,4∗, Wei-Shi Zheng1,2,3,4*

1School of Computer Science and Engineering, Sun Yat-sen University, China, 2Pengcheng Lab, China,
3Guangdong Province Key Laboratory of Information Security Technology, China,

4Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China
{fushh7, yanjk3, gaoyp23}@mail2.sysu.edu.cn, xiexiaoh6@mail.sysu.edu.cn, wszheng@ieee.org

A. More Details about Loss Function

In this work, we use patches as the basic prediction units
in Anchor Generator. We compute bipartite matching and
losses for each patch independently and the targets for each
patch are objects whose centers lie in the patch.

Further, we propose Query Weighting to stabilize the
training process, which gives high-quality anchors with
larger weights and vice versa. The Norm function is shown
in Figure A-1. The variable x in the picture is the product
of x1 and x2 in Equ. (1) of the main text. The monotoni-
cally increasing normalization function raises small values
and keeps them smaller than 1.

Figure A-1: Visualization of the normalization function in
Query Weighting.

Following other DETR-like models, we use L1 loss and
GIoU loss [17] with Query Weighting for box regression:

Lbox(b̂, b) =λ1 × wpos × LL1(b̂, b)

+ λ2 × wpos × LGIoU (b̂, b),
(A-1)

* denotes the corresponding authors.

Denoising Training AP AP50 AP75 APs APm APl

42.6 60.5 45.8 25.9 45.8 56.9
✓ 43.1 60.2 46.7 25.1 45.8 58.4

Table A-1: Equipping ASAG-A with Denoising Training.

where b̂ and b are the ground truth and the predicted box, re-
spectively. The λ1 and λ2 are set to 5 and 2. wpos is defined
in Equ. (2) in the main text. The classification loss for nega-
tive samples is sigmoid focal loss [12] and the classification
loss for positive samples is defined as follows:

Lcls(s) = −λ3 × (wpos × log s+ wneg × log (1− s)),
(A-2)

where s is the classification score with respect to the corre-
sponding class and λ3 is set to 2. wneg is defined in Equ.
(3) in the main text. In particular, wpos in classification loss
for Anchor Generator is set to IoU as dynamic anchors are
class-agnostic and the location scores should be highly cor-
related to IoUs for selection. The overall losses are the sum
of all components:

Lall = λanLanchor +Lproposal +Lfinal +

2∑
i=0

Li
auxiliary,

(A-3)
Different from losses, the matching cost in bipartite

matching does not use Query Weighting.

B. More Comparison with Other Well-Known
Detectors

In this work, we aim to narrow the performance gap be-
tween one- and six-decoder-layer detectors and retain the
fast speed by Adaptive Sparse Anchor Generation. Thus
the performance of our models is highly related to base-
lines. However, ASAGs with only one decoder layer and
fewer FLOPs still provide encouraging performance com-
pared to well-known detectors, as shown in Table A-2.



Detector Backbone #Layers #Epochs GFLOPs AP AP50 AP75 APs APm APl

DETR [1] ResNet-50-DC5 6 500 187 43.3 63.1 45.9 22.5 47.3 61.1
SMCA [6] ResNet-50 6 50 152 43.7 63.6 47.2 24.2 47.0 60.4
Deformable DETR [25] ResNet-50 6 50 173 43.8 62.6 47.7 26.4 47.1 58.0
Sparse RCNN [18] ResNet-50 6 36 152 45.0 63.4 48.2 26.9 47.2 59.5
Dynamic Sparse RCNN [8] ResNet-50 6 36 - 47.2 66.5 51.2 30.1 50.4 61.7
Conditional DETR [15] ResNet-50-DC5 6 108 195 45.1 65.4 48.5 25.3 49.0 62.2
Anchor DETR [19] ResNet-50-DC5 6 50 151 44.2 64.7 47.5 24.7 48.2 60.6
DAB-DETR [13] ResNet-50-DC5 6 50 202 44.5 65.1 47.7 25.3 48.2 62.3
DN-DETR [11] ResNet-50-DC5 6 50 202 46.3 66.4 49.7 26.7 50.0 64.3
SAM-DETR-R50 w/ SMCA [21] ResNet-50-DC5 6 50 210 45.0 65.4 47.9 26.2 49.0 63.3
DINO-4scale [23] ResNet-50 6 24 279 49.9 67.4 54.5 31.8 53.3 64.3
AdaMixer [7] ResNet-50 6 36 125 47.0 66.0 51.1 30.1 50.2 61.8
DAB-DETR-R50 + IMFA [22] ResNet-50 6 50 108 45.5 65.0 49.3 27.3 48.3 61.6
REGO-Deformable DETR [5] ResNet-50 12 50 190 47.6 66.8 51.6 29.6 50.6 62.3
SAP-DETR-DC5 [14] ResNet-50-DC5 6 50 197 46.0 65.5 48.9 26.4 50.2 62.6
Efficient DETR [20] ResNet-50 1 36 210 45.1 63.1 49.1 28.3 48.4 59.0
Cascade Featurized QRCNN [24] ResNet-50 2 36 148 44.6 63.1 48.9 29.5 47.4 57.5
ASAG-S (Ours) ResNet-50 1 36 136 45.0 64.1 49.1 29.5 47.4 57.8
ASAG-D (Ours) ResNet-50 1 36 182 45.8 64.1 49.4 27.3 49.6 61.0
ASAG-A (Ours) ResNet-50 1 36 139 46.3 65.1 50.3 29.9 49.2 59.6
DETR [1] ResNet-101-DC5 6 500 253 44.9 64.7 47.7 23.7 49.5 62.3
SMCA [6] ResNet-101 6 50 218 44.4 65.2 48.0 24.3 48.5 61.0
Sparse RCNN [18] ResNet-101 6 36 250 46.4 64.6 49.5 28.3 48.3 61.6
Dynamic Sparse RCNN [8] ResNet-101 6 36 - 47.8 67.0 52.0 31.0 51.1 62.2
Conditional DETR [15] ResNet-101-DC5 6 108 262 45.9 66.8 49.5 27.2 50.3 63.3
DAB-DETR [13] ResNet-101-DC5 6 50 282 45.8 65.9 49.3 27.0 49.8 63.8
DN-DETR [11] ResNet-101-DC5 6 50 282 47.3 67.5 50.8 28.6 51.5 65.0
AdaMixer [7] ResNet-101 6 36 201 48.0 67.0 52.4 30.0 51.2 63.7
REGO-Deformable DETR [5] ResNet-101 12 50 257 48.5 67.0 52.4 29.5 52.0 64.4
SAP-DETR-DC5 [14] ResNet-101-DC5 6 50 266 46.9 66.7 50.5 27.9 51.3 64.3
Efficient DETR [20] ResNet-101 1 36 289 45.7 64.1 49.5 28.2 49.1 60.2
Cascade Featurized QRCNN [24] ResNet-101 2 36 215 45.8 64.4 49.9 30.1 48.5 60.1
ASAG-A (Ours) ResNet-101 1 36 206 47.5 66.1 51.2 30.4 50.6 62.6

Table A-2: Performance of different query-based detectors on COCO minival set with a 3× training schedule and single
scale testing.

Note that some SOTA methods propose some advanced
training techniques rather than novel decoder structures
and these techniques can also boost the performance of
ASAG, such as denoising training [11, 23], more posi-
tives [3, 10, 26, 16], knowledge distillation [9, 2, 4]. In
Table A-1, we equip ASAG-A with 200 noised queries fol-
lowing DN-DETR [11]. The results show that Denoising
Training can also benefit our methods.

C. More Visualization
In Figure C-2, we visualize all the bounding boxes

appearing through the pipeline of ASAG-A. The anchors
precisely cover the foreground objects and Adaptive Prob-
ing sparsely explores large feature maps. The number of
patches and the location of patches vary according to differ-
ent images. In particular, the last image does not use Adap-
tive Probing by the early-stop mechanism since there is no
small object in the image. With precise anchors, the final
predictions are as close as ground truth. For the first image,
we can even predict more fine-grained bounding boxes for

books on the shelf than ground truth.
In Figure C-3, we compare feature maps of our models

with corresponding six-decoder-layer sparse detectors and
dense-initialized ones. Different from dense ones that acti-
vate the whole object uniformly, ASAGs highlight the dis-
criminative parts of objects and pay more attention to the
background, similar to six-decoder-layer sparse detectors.
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Figure C-2: More visualization of bounding boxes in our pipeline. All boxes without selection are drawn in the pictures.
Patches and anchors are drawn in red and white, respectively. Different colors for dynamic proposals, final predictions, and
ground truth are used to separate different classes in each image.
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Figure C-3: More visualization of feature maps. Feature maps of ASAGs with sparse initialization are more similar to six-
decoder-layer sparse detectors, which highlight the discriminative parts of foreground objects.
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Philipp Krähenbühl. Nms strikes back. arXiv preprint
arXiv:2212.06137, 2022. 2

[17] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In CVPR, 2019. 1

[18] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object de-
tection with learnable proposals. In CVPR, 2021. 2

[19] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
Anchor detr: Query design for transformer-based detector.
In AAAI, 2022. 2

[20] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient
detr: improving end-to-end object detector with dense prior.
arXiv preprint arXiv:2104.01318, 2021. 2

[21] Gongjie Zhang, Zhipeng Luo, Yingchen Yu, Kaiwen Cui,
and Shijian Lu. Accelerating detr convergence via semantic-
aligned matching. In CVPR, 2022. 2

[22] Gongjie Zhang, Zhipeng Luo, Yingchen Yu, Zichen Tian,
Jingyi Zhang, and Shijian Lu. Towards efficient use of multi-
scale features in transformer-based object detectors. arXiv
preprint arXiv:2208.11356, 2022. 2

[23] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605, 2022. 2

[24] Wenqiang Zhang, Tianheng Cheng, Xinggang Wang, Qian
Zhang, and Wenyu Liu. Featurized query r-cnn. arXiv
preprint arXiv:2206.06258, 2022. 2

[25] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2021. 2

[26] Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with
collaborative hybrid assignments training. arXiv preprint
arXiv:2211.12860, 2022. 2


