
A. Training Hyperparameters
A.1. Hyperparameters for Single-trial Model Scal-

ing.

Our training hyperparameters are the same as DeiT-B as
given in Table 1. We find using repeat augmentation and
erasing augmentation doesn’t show any performance im-
provement. As such, we do not use them in the training
phase.

A.2. Hyperparameters for NAS

The regularized evolution algorithm discussed in Sec.4
is identical to AmoebaNet. We set the population size set
to 50 and the tournament size set to 10. For the reward
function, exponent ϵ = −0.07, the FLOPs target is set to
FLOPs0 = 10000M .

B. Details of Baseline Scaling Operators
B.1. Learning Curve of Scaling Operators

The learning curve for different expansion operators is
given in Figure 2. The γST with momentum information
outperforms other baselines.

B.2. Details Explanations for bert2BERT and
Learn-to-share

bert2BERT (γb2B): We use a simple example to illustrate
the key idea of bert2BERT here. Assuming we are ex-
panding the first layer w0 and the input feature vector is
din, the corresponding output of the dense layer would be
do = dTinw0. w0 has a dimension of 2 × 2 and din has a
dimension of 2 × 1. After layer scaling, w′′

0 has a size of
4× 4.

din =

[
a
b

]
, w0 =

[
o p
q r

]
, dTo = dTinw0 =

[
ao
bo

]
(1)

When expanding the weight matrix w0 given in Eq.1
from a 2 × 2 matrix into a 4 × 4 matrix, we first expand
the input dimensions.

We randomly select two rows, e.g., the first row, and du-
plicate them. Then, we normalize these rows based on the
number of duplications. The corresponding input features
will be duplicated in the same fashion without normaliza-
tion. The result dense layers are given as follows:

d′in =


a
b
a
a

 , w′
0 =


o
3

p
3

q r
o
3

p
3

o
3

p
3

 (2)

As is shown above, the expanded output d′in
Tw′

0 =
dTinw0 does not change during the expansion.

Next, we randomly select two columns, e.g., the second
column, and duplicate it without normalization.

d′′in =


a
b
a
a

 , w′′
0 =


o
3

p
3

p
3

p
3

q r r r
o
3

p
3

p
3

p
3

o
3

p
3

p
3

p
3

 (3)

The final output (o′′ = d′′in
Tw′′

0 ) would be o′′ =
[ao, bo, bo, bo]. For the following layer w1, the input is de-
termined and thus the policy of row duplication is deter-
mined as well. For w1, we continue the same procedure for
expanding columns (i.e., randomly select columns and du-
plicate them). And so on, the model functionality can be
preserved.

LayerNorm(o) =
(o′′ − µo)

σo
⊙WLN + bLN (4)

However, if the next layer is LayerNorm (Eq.4). The
mean (µo) and variance (σo) of the output o changes. ⊙
denotes the element-wise multiplication. During expan-
sion, we don’t know the relationship between ao and bo, so
bert2BERT cannot preserve functionality through changing
the LN scale and LN-bias, i.e. WLN and bLN .

On the other hand, γST will yield output o′′ =
[ao, bo, ao, bo]. The mean µo and the variance σo of the out-
put vector does not change.
Learn-to-grow. learn-to-grow proposes to learn linear ma-
trices that map the pretrained weights into larger weight ma-
trices to preserve the functionality of the small pretrained
model. We denote its width and depth expansion operator
as γltg and βltg, respectively.

W ′
i = γltg(wi) = HiwiH

T
i , i ∈ {1, ..., l} (5)

Here, Hi (D × d) is a trainable linear layer that maps the
dense layer wi into W ′

i . wi has a dimension of d × d and
W ′

i has a size ofD×D. For layer normalization and weight
bias with a dimension of d × 1, the expansion is similar to
Eq 5.

After width expansion, learn-to-share trains another set
of linear mappings for depth expansion that expands W ′

into W :

Wi = βltg(wi) = Σl
j=1Pi,jW

′
j , i ∈ {1, ..., L} (6)

Here Pi is a 1 × l vector. l is the number of layers in the
pretrained model; L is the number of layers in the scaled
model. This means the expanded layer Wi is the weighted
sum of W ′

j where j ∈ {1, ..., l}.



Table 1. Hyperparameters for model scaling experiments. The hyperparameters are identical to DeiT-B. We find batch augmentation and
Erasing are not useful to increase the final task accuracy.

Search
method

Search
method

Learning
rate decay

Warmup
epoch

Label
smoothing Dropout

Drop
path

Repeat
Aug

Gradient
clip RandAug Mixup Cutmix Erasing

4096 4e-3 cosine 5 0.1 0.0 0.1 × × ✓ ✓ ✓ ✓

The linear mappings (H , P ) are introduced to scale ev-
ery dense layer in the scaled ViT. These mappings contain a
large number of parameters and require a prohibitively ex-
pensive hardware memory for training. Some techniques
are proposed in the paper to reduce the number of parame-
ters, such as Kronecker factorization.

In this paper, we find the objective of training these linear
mappings is the same as training the scaled model (Eq.5).
For ViT-S−→B, learn-to-grow can achieve 72% initial accu-
racy. Specifically, learn-to-grow trains the linear mapping
H , P for around 200 steps and scale the model accord-
ing to Eq.5-6. However, using γST alone to scale S−→B
can achieve the pretrained DeiT-S accuracy (79%) at step 0.
γPad0 can achieve 73% accuracy with 200 steps of model
training. This means training these linear mappings for in-
creasing the initial accuracy is redundant. Besides, as dis-
cussed in Sec.2.3, we argue that initial accuracy alone is not
the key to successful model scaling.

C. Combine TripLe with KD
As we reuse the DeiT architectures, the output has two

parts: (1) the output logits of distillation head ot and (2) the
output logits of classification head os. Assuming the output
logits of the teacher model isZt, the corresponding teaching
label would be yt = argmaxc Zt(c). When KD is applied,
the hard loss is defined as Eq 7.

LhardDistill
global =

1

2
LCE(ψ(os), y) +

1

2
LCE(ψ(ot), yt) (7)

ψ is the softmax function. LCE is the cross-entropy
loss. During model evaluation under KD, the prediction
comes from the combination of both os and ot: ȳ =
argmaxc

os+ot
2 (c).

When we disable the knowledge distillation, we follow
the official DeiT implementation1 for training and the loss
is given as Eq 8.

Lglobal =
1

2
LCE(ψ(

os + ot
2

), y) (8)

D. Learning Curve of NAS
For each trial, both TripLe-NAS and multi-trial NAS

conduct 30 epochs of training. The learning curve of the
agent during the searching phase is given in Figure 1. Gen-
erally, both multi-trial and TripLe-NAS gradually increases

1https://github.com/facebookresearch/deit

Figure 1. Learning Curve of the agents during NAS when each
sample is trained with (1) TripLeep30 (2) Scratchep30.

Table 2. Transfer learning results on various datasets.
Model Params FLOPs CF-10 CF-100 Cars Flowers

DeiT-B (official) 86M 33.7B 99.1 90.8 92.1 98.4
S−→B, LTG 86M 33.7B 99.1 90.7 92.1 97.8

S−→B, TripLeep300 86M 33.7B 99.1 90.8 92.2 98.4

reward over time. The learning curve of TripLe-NAS is
more stable compared to multi-trial NAS.

E. Model Transfer Learning
Table E shows the transfer learning results of ViT-TripLe

and ViT-Scratch. For the downstream tasks, the inputs are
resized into 224×224.

F. Searched architectures.
Table F shows the models searched using NAS with

TripLe and traditional multi-trial NAS.



Figure 2. Training Ti−→S with 30 epochs using different width expansion methods, i.e., γb2B , γST , γpad0, γintp. ‘+m’ denotes we also
employ optimizer states in the pretrained model as discussed in Sec.2.3.

Table 3. Searched Architectures from (1) multi-trial NAS with TripLe and (2) traditional multi-trial NAS.
Model Params FLOPs hidden dim Layers hf ef wd lr

ViT-TripLe 27M 10416M 384 19
[32,32, 64,64,64,32,32,32,32,32,32,64]

[32, 64,32,32,64,32,32]
[2,4,2,2,2,4,4,2,2,4,2,2]

[4,4,2,2,2,4,2] 0.05 4e-3

ViT-Scratch 30M 11409M 384 19
[32,32,64,32,32,64,32,64,32,64,64,64]

[32,32,32,32,32,32,32]
[3,4,4,2,3,4,2,3,4,4,4,2]

[4,4,2,2,2,4,2] 0.05 4e-3

Figure 3. Task performance when trained with (1) TripLeep30 (2)
TripLeep120 (3) Scratchep30 (4) Scratchep30.


