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Figure 1. Additional emotional expressions generated by EAT.
EAT produces realistic and diverse facial expressions with corre-
sponding emotional guidance. Please zoom in for a better view.
Source images are from CREMA-D[3] and MakeItTalk[23].

A. The Networks Details

We provide additional details of our network architecture
and training procedure. It should be noted that the Keypoint
Detector (Dk) and RePos-Net networks are primarily de-
rived from OSFV [19]. For more information, interested
readers may refer to OSFV [19].
Audio-to-Expression Transformer. We use the Audio-to-
Expression Transformer (A2ET) to transfer the audio to 3D
latent expression deformation sequences. The A2ET con-
sists of an encoder and a decoder, both with 6 transformer
layers and 8 heads. The feed-forward layer has a dimension
of 1024. Each token is a 128-dim vector. The expression
deformation vector (Ei) is predicted by the feature of the
central frame i. However, directly optimizing the 3D ex-
pression motions leads to convergence problems in network
training. To address this issue and bridge the gap between
the 3D expression deformation and the audio features, we
use principal component analysis (PCA) to reduce the di-
mensionality of Ei from 45 to 32. Specifically, we calculate
the matrix of principal eigenvalues U and mean vector M
from the training set. Then the expression deformation vec-
tor is obtained by projecting the predicted PCA using the
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following equation:

Ei = PEi ∗ UT +M, (1)

where PEi is the predicted PCA and Ei is the expression
deformation, which is used to modify the neutral 3D key-
points to generate the expressive face. As the number of
keypoints is 15, the shape of Ei is (15, 3).
Emotion Mapper. We propose an emotion mapper that
produces emotional tokens to guide the generation of emo-
tional expressions. As shown in Fig. 2(a), the emotion map-
per M consists of several shared and unshared multi-layer
perceptrons (MLP) layers. It takes a 16-dim latent code z
as input and outputs seven emotional tokens e0, e1, · · · ,
e6. The first token e0 serves as the emotional guidance for
the emotional adaptation module (EAM), which modifies
the features of the audio-to-expression transformer (A2ET).
The remaining six tokens e1, · · · , e6 are fed to the cor-
responding transformer layer of A2ET as deep emotional
prompts. The Emotional Deformation Network (EDN) then
uses all these tokens and the latent source representation to
generate the emotional deformation ∆E.
Emotional Deformation Network. The Emotional De-
formation Network (EDN) learns the emotional deforma-
tion ∆E using the same architecture as the A2ET encoder,
which has six transformer layers. Fig. 2(b) shows the input
and output of EDN. It takes the latent source representation
d and the emotional guidance tokens e0, e1, · · · , e6 as input,
and extracts their features fd, fe0 , · · · , fe6 . Then it applies
global average pooling to the emotion-related features fe0 ,
· · · , fe6 and uses an MLP layer to obtain the final emotional
deformation ∆E.
Emotional Adaptation Module. The emotional adapta-
tion module (EAM) consists of two multi-layer perceptrons
(MLPs). As shown in Fig. 2(c), given the input feature x
and the emotional token e0, we extract the weight vector
γ and the bias vector β using MLPs. They have the same
dimension as the input x. With the channel-wise multiplica-
tion operation Fs and channel-wise addition, we obtain the
output x′.
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Figure 2. More network architectures of our EAT model.

Happy Angry Disgusted Fear Sad Neutral Surprised Contempt Average

Wav2Lip [14] 0.00 25.64 0.00 0.00 0.00 91.25 0.00 0.00 17.87
MakeItTalk [23] 0.00 25.64 0.00 0.00 0.00 75.00 0.00 0.00 15.23
AVCT [18] 0.83 25.64 0.00 0.00 0.00 69.38 0.00 10.08 15.64
EAMM [9] 23.33 84.48 9.40 0.00 0.00 98.13 94.02 72.27 49.85

Pretrain (Ours) 35.00 11.97 0.00 0.00 49.17 38.75 0.00 59.66 25.18
EAT (Ours) 84.17 100.00 48.72 16.52 49.17 100.00 100.00 94.96 75.43

Table 1. Quantitative evaluation of the emotion classification in the MEAD dataset.

Weight PSNR↑ M/F-LMD↓ Sync↑ Accemo↑
w/o 21.49 2.27/2.46 8.02 76
EAT 21.79 2.22/2.43 8.22 67

Table 2. Ablation study of EDN weight initialization. The
weight initialization of EDN with the A2ET encoder promotes the
performance of EAT.

Parameter Efficiency Analysis. Our Deep Emotional
Prompts, EDN and EAM only require about 7% of the pa-
rameters compared to the whole network. The emotion
mapper, which generates deep emotional prompts for eight
emotions, has most of the parameters. In addition, EDN and
EAM consume less than 2%. These parameters are 13.9M.
This is half of the emotional network of EAMM [9], which
has 27.9M parameters.

B. Training and Testing Details

Training Details. We use the MEAD dataset and 8k emo-
tional video clips from Voxceleb2 [5] with various facial
expressions to learn the enhanced latent keypoints. We
also use roughly 21k emotional images from AffectNet [13]
to train emotional expression generation. Due to the lack
of corresponding neutral faces, we generate neutral faces

paired with emotional images by using Ganimation [15].
We train our EAT with Adam [10] with β1 = 0.5 and
β2 = 0.999. The learning rate is set to 1.5×10−4 for A2ET
and 2× 10−4 for other modules. In the first stage, we train
A2ET with only latent loss first to obtain a good initializa-
tion, and then we train it with full loss. To improve gener-
alization, we use the Voxceleb2 and MEAD datasets, which
contain about 225k video clips. In the second stage, we
finetune efficient adaptation modules with only the MEAD
dataset, which has about 10k video clips. We test our model
on LRW [6] and MEAD [17] dataset.
Testing Details and Protocol. When testing LRW, the in-
put is the first frame, and the transformation starts from
the first frame. Therefore, the relative offsets of the latent
keypoints are used. When testing MEAD, due to the varia-
tion in facial expressions, which is unrelated to the neutral
source image, the predicted latent keypoints are used.

To ensure accurate evaluations, we crop and align [4] the
faces before calculating these metrics: PSNR, SSIM, FID,
M-LMD, and F-LMD. As for synchronization confidence,
we preprocess the generated videos with reference to PC-
AVS [22].

C. Additional Experimental Results

Additional baseline results. As shown in Figure 3, we
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Figure 3. More Qualitative results. We compare with more baselines, such as MakeItTalk [23], Wav2Lip [14], and our pretrained model.
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Figure 4. Emotion interpolation. The top row is the emotion interpolation results between Angry and Surprised. The bottom row is the
results between Contempt and Sad. The neutral faces are from MEAD [17]

compare our EAT results with several baseline methods.
Our results are more pleasant than those of MakeItTalk [23]
and Wav2Lip [14], which do not consider emotional ex-
pression in talking heads. Additionally, our EAT achieves
emotion control compared to the pretrained A2ET network.
Videos are included in the supplementary material for ref-
erence.

Various emotional expressions To validate the diversity
of emotional expressions generated by EAT, we present
six different emotional results in Fig. 1. Compared to
Neutral emotion, emotional expressions result in differ-
ent modifications to facial elements, such as lip corners,
eyes, and brows. We present the quantitative results of
emotion classification in Table 1. We notice that EAT
works significantly better on Happy, Sad, Disgusted, and
Contempt than other methods. This is because our method

can capture mouth details and these emotions can be more
clearly reflected by the lips. As for Neutral, Angry, and
Surprised, EAMM [9] performs well since these emotions
are more apparent on the eyes and brows. And EAT can
also achieve better performance in these emotions. How-
ever, all methods perform poorly on Fear emotion. It may
be because Fear and Surprise are similar and difficult to
distinguish.

Emotion interpolation. We conduct emotional guidance
interpolation on the MEAD test set to verify that the la-
tent space learned by the emotion mapper is continuous, as
Fig. 4 shows.

Additional ablation study. We conduct further ablation
studies on the weight initialization of EDN, Our results, pre-
sented in Table 2, show that using the weight initialization
of the A2ET encoder leads to quicker convergence and im-
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Figure 5. Visualization on each component of EAT.
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Figure 6. Visualization on the profile faces of MEAD.
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Figure 7. Failure case. The driving audio and poses are from the
videos in the first row. The second and third rows display the gen-
erated results with Surprised emotional guidance. Neutral faces
are from MakeItTalk [23] and driving video is from LRW [6].

proved performance in terms of video quality and audio-
visual synchronization.
Visual analysis on each component of EAT. To analyze
the effect of each component of our model, we show the fear
emotion results from (A), (B), and (C), with corresponding
accuracy rates of 38.46%, 30.77%, and 15.38% respectively
in Fig. 5. Deep emotional prompts help generate intense
emotional expressions that deviate from the Ground Truth
(GT). By incorporating EDM and EAM, we achieve greater

fidelity toward the GT and higher image quality in terms of
PSNR/SSIM. This is attributed to the learning capabilities
of EDM and EAM for emotional data. However, it results
in reduced emotion intensity and accuracy.
Visualization on the profile faces. To assess the ability
of enhanced latent representation in 3D talking-head gen-
eration, as shown in Fig. 6, we visualize the talking-head
frames generated from the profile faces of MEAD. We test
the faces captured from left 30 degrees and right 60 degrees
with Suprised and Happy emotions.

D. Limitations and Future Work.

While EAT is capable of generating emotional talking-
head videos with emotional guidance, there are still some
limitations. Firstly, the diversity of background and head
pose in emotional training data can affect the generalizabil-
ity of our EAT. As shown in Fig. 7, the wrinkles on the
forehead are not obvious in these in-the-wild images. This
issue could be addressed by more naturalistic and non-acted
emotional data [20, 11, 2] and representations with the head
prior, such as FLAME[21]. Secondly, effective guidance
texts are required to achieve zero-shot generation. This may
be due to the limited ability of models trained on image-text
pairs to capture emotional expression, which could affect
the performance of zero-shot learning. Thirdly, the eye re-
gion, such as eye blinks [16] and gaze direction [8], has
not been considered in our work. Finally, the discrete emo-
tion guidance limits the representation ability of our model.
It needs to note that facial expressions are not always rep-
resentative of the internal emotional state [1]. More refined
theories of emotion, such as the valence-arousal model, may
help generate more realistic emotions. We leave these prob-
lems for future work.

E. Ethical Considerations

Our research is intended for use in virtual human re-
search and entertainment. However, there is a risk that
the emotional talking-head generation algorithm could be
abused. We strongly recommend that generated talking-
head videos be labeled as “fake”. On one hand, our
work demonstrates that emotional talking-head generation



is technically feasible. On the other hand, fake video detec-
tion [7, 12] has attracted significant attention. We would be
happy to assist in the development of related research.
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