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In this document, we provide additional details and experi-
mental results for our proposed method Sparse Intermittent
Rewrite Injection. The supplementary material is divided
into the following sections:

• Additional Experiments: We provides additional
comparison to CSGStump [9] in section 1.1. We re-
port our experiments on advanced versions of CSG and
ShapeAssembly in Section 1.3, and Section 1.4 reports
some additional analysis on SIRI.

• Implementation Details: In Section 3, we elaborate
on the different Domain Specific Languages (DSLs).
Additionally, from section 4.1 - 4.3, we provide imple-
mentation details of the three proposed rewriters.

• Qualitative Results: We present various qualitative
comparison between CSGStump [9], PLAD [5] and
our method in section 5.

1. Additional Experiments
1.1. Comparison to CSG-Stump

Program Complexity: In Figure 1, we visualize the pro-
grams inferred by CSG-Stump 32 and SIRI as Geometry
Node graphs in Blender [1], a popular tool for procedural
modelling. We can see that CSG-Stump 32, despite being
the smallest of the models (vs CSG-Stump 256), still pro-
duces highly complex graphs with a myriad of nodes and
links. Editing such programs to create shape variations is ar-
duous. Additionally, the program is hard to interpret due to
its highly connected nature. Such complex program graphs
lose a fundamental advantage of the programmatic repre-
sentation: interpretability and editability.
Test-time rewriting with CSG-Stump: Our work pro-
poses three rewriters which can improved bootstrapped
learning as well as perform test time rewriting (TTR).
An important question is whether TTR can improve pro-
grams inferred by domain specific networks such as CSG-
Stump [9]. To answer this question, we perform test time
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Figure 1. We show the 3D CSG programs inferred by differ-
ent methods as Geometry Node trees in Blender [1]. Programs
inferred by even the smallest CSGStump [9] model (with 32 prim-
itives and 32 intersection nodes) is highly complicated. In com-
parison, SIRI programs are parsimonious and hence easier to edit.

rewriting with our rewriters on programs inferred by CSG-
Stump. We report the results in Table 1. Note that to
limit the optimization time, we apply our rewriters on CSG-
Stump 32 model (a model with 32 primitives, and 32 inter-
section nodes).

First, we notice that TTR indeed improves the recon-
struction quality (as measured by IoU and median CD) as
well as the program length for CSG-Stump as well. How-
ever, we do note that mean CD spikes up due to some poorly
optimized programs. Second, we note that due to the large
programs inferred by CSG-Stump (even for the smallest
model), TTR takes an order of magnitude more time than it
takes with SIRI inferred programs. Both of these trends in-



TTR Model IoU-32 (↑) IoU-64 (↑) mean CD (↓) med. CD (↓) Length (↓) Time (↓)

∅ CSG-Stump 32 49.88 39.83 1.88 1.58 98.94 0.05
3 CSG-Stump 32 73.83 54.34 2.56 1.03 63.58 133.88

∅ SIRI 76.77 54.61 1.12 0.69 6.81 1.44
3 SIRI 90.59 60.60 0.83 0.51 15.96 14.60

Table 1. We perform test time rewriting on programs inferred by CSG-Stump 32 [9] with our proposed rewriters. While it improves the
reconstruction accuracy and decreases the program length, it still under performs SIRI. Additionally, applying TTR to CSG-Stump 32
inferred programs takes a order of magnitude more time than applying TTR to SIRI inferred programs.

IoU (↑) CD (↓) Length (↓)

SIRI 78.63 1.13 6.81

No Sparse 77.94 1.28 6.98
Single Rewrite Queue 77.45 1.34 6.15
Single Queue 77.63 1.25 6.53

NRI 75.91 1.29 8.98

Table 2. We compare variants of SIRI to validate its design. SIRI
outperforms the baselines, and shows that sparse rewrite usage,
as well as careful rewrite injection (via source-separated queues)
are essential to integrate rewriters into bootstrapped learning pro-
cesses.

dicate that producing sparse programs from start (via boot-
strapped methods) may be preferable over producing over-
parameterized programs (via domain specific networks).

1.2. Ablation

We now provide an ablative analysis of our method to
verify the importance of each component. For consistency,
we perform all ablations on the 3D CSG language and re-
port metrics on the validation set.
SIRI ablation: We perform a subtractive analysis on
SIRI by changing/removing individual components of the
method. We compare SIRI to three alternatives:

1. No Sparse: Instead of applying to rewriters to a subset
of programs, they are applied to all programs.

2. Single Rewrite Queue: Instead of storing sepa-
rate queues for each rewriter via the source mapping
SPO, SCP , SCG, we store a single queue SR shared
between all the rewriters.

3. Single Queue: We remove the separate sources
SNS , SPO, SCP , SCG, and simply store the top-k
(k = 3) programs for each input shape x.

We report the results in Table 2. SIRI surpasses all the
other ablations. At the same time, all the ablations are able
to surpass the naive rewriter integration NRI, albeit with
a smaller margin. This shows that sparse rewrite usage,
as well as careful rewrite injection (via source-separated

IoU (↑) CD (↓) Length (↓)

SIRI 78.63 1.13 6.81

no PO 77.80 1.27 6.10
no CP 77.31 1.21 6.18
no CG 76.21 1.27 5.58

PLAD 76.21 1.43 6.39

Table 3. We report reconstruction accuracy as well as code-quality
on 3D CSG+ with each rewriters individually removed. Using
all the three rewriters (top-row) yields the best reconstruction and
code-quality. Using no rewriters is equivalent to PLAD (bottom-
row).

queues) help integrating the rewriters into bootstrapped
learning processes.
Rewriter Ablation: Next, we test whether using all the
three proposed rewriters PO, CP, CG is essential. Ta-
ble 3 compares SIRI to models trained with one rewriter
removed each. We see that using all the three rewriters im-
proves the performance.

1.3. Advanced Languages

To take a step towards supporting languages closer to
those used in real-world scenarios, we extend 3D CSG
and ShapeAssembly to contain more complex features (de-
scribed in detail in Section 3), and perform additional exper-
iments on these languages. Note that while the extensions
are simple under our general framing, domain-specific net-
works such as CSG-Stump [9] and UCSG-Net [6] require
non-trivial changes in their architecture to support such ex-
tensions.
Bootstrapped Learning: We train the unsupervised VPI
network with PLAD, NRI and SIRI. We report the results
in Table 4. On both the advanced languages, SIRI outper-
forms the baselines. More importantly, a naive integration
of the rewrites (i.e. NRI) is detrimental on both the lan-
guages. This experiment emphasizes the complexity of in-
tegrating rewrite mechanisms into learning frameworks. By
using the rewriters sparsely and carefully injecting rewrit-
ten programs into the training data, SIRI is able to improve



3D CSG+ ShapeAssembly+
IoU (↑) CD (↓) Length (↓) IoU (↑) CD (↓) Length (↓)

PLAD 70.51 2.35 9.09 61.22 2.63 8.51
NRI 68.25 2.45 10.57 58.82 2.74 10.31

SIRI 71.48 2.17 9.99 63.91 2.41 9.24

Table 4. We report the Test-set performance across advanced versions of 3D CSG (3D CSG+) and ShapeAssembly (ShapeAssembly+). As
a result of their higher complexity, we see performance on advanced languages is lower than performance on simple languages. However,
that trend observed in the main draft is seen here as well - naively integrating the rewriters into PLAD (NRI) can deteriorate the model’s
performance, and SIRI consistently outperforms both the baselines.

TTR
3D CSG+ ShapeAssembly+

IoU CD Length IoU CD Length

PLAD 78.5 1.68 15.9 71.82 2.17 11.35
SIRI 82.8 1.48 20.3 74.65 1.92 11.47

Table 5. We apply test time rewriting for models trained on the
advanced languages. Reaffirming the results in the main draft, we
see that using test-time rewrites with SIRI remains superior to us-
ing it with PLAD.

bootstrapped learning through the rewriters.
Test Time Rewriting: We perform test time rewriting
(TTR) on both 3D CSG+ and ShapeAssembly+ domains
with models trained with PLAD and SIRI. Our results are
tabulated in Table 5. Similar to the results in the main draft,
test time rewriting is more effective on programs inferred
by SIRI than by PLAD.

1.4. Other Experiments

Sensitivity to α: A key ingredient in the objective O is
the α factor balancing the weightage between reconstruc-
tion accuracy and program length. In figure 2, we compare
the validation-set performance of PLAD and SIRI on 3D
CSG for different values of the alpha parameter. We note
that across the different settings, SIRI consistently outper-
forms PLAD in reconstruction accuracy (IoU).
Understanding NRI failure: Why does NRI fail? To an-
swer this question, we study additional training statistics,
namely the trained network’s train-set performance, val-
set performance, and quality (as measured by our objective
O) of the training data created via the Search and Rewrite
phases. We show the corresponding graphs in Figure 3.

One may assume that NRI performs poorly due to over-
fitting to the training data. However, we see that this is
not the case - inference performance on both the training-
set as well as validation-set for NRI is lower than SIRI.
As PLAD-finetuning performs early-stopping, with weight-
reloading before Search phase, it avoids overfitting to the
training data. Another hypothesis may be that the programs
found for the training shapes might be bad matches. How-

0 5 10 15 25 50

70

75

Io
U

0 5 10 15 25 50

5

10

Le
ng

th

PLAD
SIRI

Parsimony Parameter  (×103)
Figure 2. We compare PLAD and SIRI for different values of α
(X-axis), measuring the IoU (left), and program-length (right) on
the validation set of the 3D CSG domain. SIRI consistently dom-
inates PLAD, and setting α = 0 harms both reconstruction accu-
racy and conciseness.

ever, we see that this is also not the case from the ‘Execu-
tion of train shapes’ plot. As NRI only trains on the “best
programs” seen thus far, the training data quality, as mea-
sured by the objective O, is significantly higher than SIRI.
However, despite the higher reconstruction matches against
their target shapes, the model trained with NRI does not
generalize from these training programs and fails to per-
form well on the validation-set, resulting in performance
stagnation for NRI. In contrast, SIRI is able to perform
well on the validation set, despite training on programs
which have lower reconstruction matches versus their target
shapes. This indicates that for bootstrapped learning, sim-
ply maximizing the reconstruction accuracy of training pro-
grams may not be sufficient: instead it is necessary to find
programs for shapes in the training set that both (i) produce
good reconstructions, and (ii) help the inference network to
learn policies that generalize to held-out shapes from the
same-distribution (validation set). We find that the exces-
sive use of rewriters in NRI violates assumption (ii), but we
hope to explore this phenomena more in future work.

2. Evaluation details

To infer programs from the networks learned via boot-
strapped learning processes (PLAD, NRI, SIRI), we per-
form neurally guided-beam search with a beam-size of 10.
For each input shape, this search generates a candidate pool
of programs, from which, the objective maximizing pro-
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Figure 3. To understand why NRI fails, we analyse the training process for NRI trained and SIRI trained models. We show the (a)
execution of train shapes (b) inference on train shapes and (c) inference on validation shapes. NRI does not overfit to the training data, and
while its training data is of high quality (i.e. their execution yields high value of objective O), its train and validation inference performance
remain low (cf. section 1.4 for more details).

gram is selected as the inferred program. This approach
is the same as the one used in PLAD [5]. For CSG-Stump,
a forward pass through the network produces a single prob-
abilistic program. The inferred program is then generated
by simply replacing each probabilistic parameter with the
modal value of its distribution (for instance, the argmax of
each categorical distributions).

Given a set of input shapes, we measure the quality of
inferred programs along two axis: a) reconstruction accu-
racy, to measure how well the inferred program’s execution
reconstructs the input shape, and b) program parsimony, to
measure how concise the inferred programs are (motivated
by the Occam’s razor principle).

Reconstruction metrics: The execution of programs re-
sults in a Rn grid of occupancy values (where n = 2 for 2D
and n = 3 for 3D). As the input is also in the form of a Rn

grid of occupancy values, we can directly measure the In-
tersection over Union between the inferred occupancy and
ground-truth occupancy by comparing them. For measuring
Chamfer Distance, on 2D data we follow CSG-Net [10], and
on 3D data we follow CSG-Stump [9].

Program Parsimony: Program length is measured as the
number of statements/commands in a program. Note that
this differs from the number of discrete tokens required to
define a command/statement (for instance, a Cuboid com-
mand in 3D CSG requires 7 tokens, 1 to specify command
type, 3 to specify the 3D position, and 3 to specify the 3D
scale).

3. DSL Grammars

3.1. Simple DSLs

2D CSG: For 2D CSG, each primitive is instantiated with
5 parameters, specifying its 2D position, 2D scale and rota-

tion. We specify the grammar as follows:

S → E;

E → BEE | D(F, F, F, F, F );

B → intersect | union | subtract;
D → rectangle | ellipse;
F → (−1, 1);

In the D(F, F, F, F, F ) command, the first two real
numbers F specify the translation, the next two specify
scaling, and the last specifies rotation. F is mapped to
different ranges for these different operations. For trans-
lation, F remains as is, for scaling F is linearly mapped
from (−1, 1) to (0.01, 2.01), for rotation, we linearly map
F from (−1, 1) to (−π, π).
3D CSG: 3D CSG matches the language used in PLAD [5].
For 3D CSG, each primitive is defined by 6 parameters,
specifying its 3D position, and 3D scale (no rotation). The
range mapping of real number language tokens F for the
different operations followed for 2D CSG is applied here as
well. We specify the grammar as follows:

S → E;

E → BEE | D(F, F, F, F, F, F );

B → intersect | union | subtract;
D → cuboid | ellipsoid ;

F → [−1, 1];

ShapeAssembly: ShapeAssembly creates structures by in-
stantiating cuboids, and attaching them to one another.
We utilize the version of ShapeAssembly described in
PLAD [4] with a slight modification. Specifically, in our
version attach and squeeze commands are defined for 3D
points rather than 2D surface points. This makes our ver-
sion of ShapeAssembly closer to the original defined in Sha-
peAssembly [3]. Following PLAD, we restrict the bounding



box to always have l = 1, w = 1, and remove the axis-
alignment flag from cuboid instantiation. Furthermore, for
all sub-programs we restrict the bounding box to always
have h = 1 as well. We specify the grammar for Sha-
peAssembly as the following:

Start → BBlock;CBlock;ABlock;SBlock;

BBlock → bbox = Cuboid(l, h, w)

CBlock → cn = Cuboid(l, w, h);CBlock |None

ABlock → A;ABlock | S;ABlock |None

SBlock → R;SBlock | T ;SBlock |None

A → attach(cn1
, x1, y1, z1, x2, y2, z2)

S → squeeze(cn1
, cn2

, f, u, v)

R → reflect(axis)
T → translate(axis,m, d)

f → right | left | top | bot | front | back
axis → X | Y | Z
l, h, w ∈ R+

x, y, z, u, v, d ∈ [0, 1]2

n,m ∈ Z+

3.2. Advanced DSLs

To ease learning, past approaches have used simplified
versions of visual languages as described in the previous
section. However, real world visual programs offer ad-
vanced operations, e.g. real world CSG programs con-
tain hierarchical transformations (rather than primitive level
transformations). As a step towards such languages, we also
test our method on advanced 3D CSG (3D CSG+) and Sha-
peAssembly (ShapeAssembly+).
3D CSG+: we introduce two important classes of com-
mands - hierarchical transformations, transformations that
can be applied to compound shapes, and axis-aligned re-
flection. Further, to reduce parameter redundancy, we in-
stantiate primitives without any parameters, i.e., they are
instantiated in a canonical form (origin centered, and unit
scale with no rotation). The grammar is defined as follows:

S → E;

E → BEE | TE | D;

B → intersect | union | subtract;
D → cuboid | ellipsoid | cylinder;
T → translate(F, F, F ) | scale(F, F, F ) |

rotate(F, F, F ) | R;

R → reflect(X) | reflect(Y ) | reflect(Z);

F → [−1, 1];

ShapeAssembly+: We extend the simple ShapeAssembly
described previously by allowing hierarchical composition
of programs. Specifically, our version allows hierarchical
programs, where cuboids in the root program can act as the
bounding box for their own ShapeAssembly programs. Sha-
peAssembly+ follows the same grammar as ShapeAssem-
bly with the following change:

CBlock → cn = Cuboid(l, w, h, sp);CBlock |None

sp ∈ Z+

During cuboid instantiation, parameter sp specifies whether
the cuboid is empty (sp = 0) or contains the sp-th Sha-
peAssembly program (all the ShapeAssembly programs are
decoded by the inference network).

4. Code Rewriters
Our rewriters are formulated to be generally applicable

across visual programming languages. In this section, we
outline the requirements to apply each rewriter, along with
implementation details and a walkthrough example.

4.1. Parameter Optimization (PO)

The Parameter Optimization (PO) rewriter aims to im-
prove the continuous parameters of a given program while
keeping its discrete structural parameters fixed. Further-
more, it aims to use first-order gradient based optimization
to update these parameters. Towards this end, PO requires
that the programs derived from the language grammar must
be continuous and piecewise differentiable with respect to
≥ 1 program parameters ϕ.

Additionally, as PO performs gradient based optimiza-
tion, it requires a partially differentiable executor for the
language (differentiable w.r.t. ϕ at least). By chaining a dif-
ferentiable reconstruction measure R (such as L2-loss w.r.t.
a occupancy grid) to the program’s differentiable execution,
we can then optimize the program parameters ϕ to improve
the reconstruction measure R.

Most shape languages instantiate parameterized primi-
tives and combine them with different combinators to create
shapes. When languages can map the program parameters p
to primitive parameters in a piecewise differentiable manner
(as in ShapeAssembly [3], and CSG), we can yield a par-
tially differentiable executor D for the language with the
procedure outlined in the paper (cf. Section 4.1). We revisit
the procedure here with more details.

D(z) maps the execution of program to an equivalent
implicit sign-distance function. Given a program zϕ, we
use the programs executor E to map program parameters
ϕ to parameters (position, scale, rotation) of implicit func-
tions representing simple geometric primitives (cuboids,
spheres etc.). For CSG, the mapping is 1-to-1, but for



Before After
Figure 4. We show the PO rewriter applied to 3D CSG programs.

other languages such as ShapeAssembly, these parameters
are derived from the program’s execution. Then, we ap-
ply boolean combinators of the parameterized primitives to
obtain the program’s implicit equivalent. Armed with the
program’s implicit equivalent, we uniformly sample points
t ∈ Rn and convert the signed distance at the points into
“soft” occupancy values to yield a differentiable execution
of the program.
Optimization: From the program’s implicit equivalent, the
soft-occupancy values O(z) are derived as follows:

O(z) = σ(−tanh(sdf(z)× α)× α), (1)

where σ is the sigmoid function, and α is a scalar value.
We run our optimization procedure for 250 steps with the
Adam [7] optimizer (learning rate is set as 0.01), and we
scale α logarithmically from log(3) to log(10). Finally, to
ensure that the parameter values remain within range, we
perform our optimization on θ = tanh−1(ϕ/s), where s is
the range of each parameter, instead of ϕ directly. Figure 4
presents examples of the PO rewriting procedure in action.

4.2. Code Pruning (CP)

Given a shape x and program z, CP rewrites z s.t.
zR ∼ argmaxΩCP O(x, z), where ΩCP (z) = {z̃|z̃ ⊆ z}
represents the set of all valid sub-programs of z, i.e. CP
aims to identify and remove program fragments that nega-
tively contribute to our objective O. In Figure 5, we show
examples of CP rewriter in action and in Algorithm 1 we
present a high-level overview of CP. We first describe how
to apply CP to a simply-typed lambda expression. We then
describe how we map different languages, such as CSG and
ShapeAssembly to such expressions.

Before After
Figure 5. We show the CP rewriter applied to 3D CSG programs.
Note that in the second figure, CP identifies a sub-tree of the input
program which in fact obtains higher reconstruction accuracy w.r.t.
the target shape.

Given a simply-typed lambda expression, we perform
CP via two rewrite passes, namely a bottom-up and a top-
down pass to approximate zR. First, we create a directed
acyclic expression-tree comprised of expression-nodes and
edges connecting them. Each expression node stores the
execution of the sub-expression formed with that node as
the root. Now our goal is to identify nodes which can be
pruned from the graph. First, we perform a top-down traver-
sal of the graph, and evaluate the objective O w.r.t. the input
shape x at each node. We identify the node with the high-
est score, and mark it as the root node. Next, during the
bottom up traversal, we identify and prune nodes which are
extraneous. For CSG language, we detect such extraneous
nodes by comparing them to their parent node - if the parent
node’s execution exactly matches a child node’s execution,
all the sibling nodes are extraneous and can be removed.
We also mark nodes as extraneous if the node’s execution is
empty (i.e. the node’s subexpression evaluates to null). For
ShapeAssembly, nodes whose execution does not overlap
with the target shape x are marked as extraneous (as Sha-
peAssembly is a purely additive language). We present an
example of the two traversals in CP rewriting procedure in
Figure 6.

As stated earlier, to apply CP, we map the program to
a simply typed lambda expression, which is then used to
construct an expression tree. For CSG, the program itself
is such an expression. For ShapeAssembly, we utilize the
program’s implicit equivalent (as defined in Section 4.1) to
construct the expression. However, since ShapeAssembly
is an imperative language, nodes can have interdependency
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Figure 6. We show the two traversals of CP rewriter on 2D CSG on a manually created example. The Top-Down traversal identifies the
objective O maximizing root node, and Bottom-Up traversal prunes extraneous nodes of the sub-tree starting from objective maximizing
node. In this example, during the bottom-up traversal, as the top node matches its parent node, we remove its sibling node and simplify the
expression.

Algorithm 1 Code Pruning
Input: Set of programs Zx & Executor E.
Hyper-parameters: no. programs to rewrite n
Output: Rewritten programs ZR

1: for zx in random sample(Zx, n):
2: # top down pass
3: zr = zx
4: for subtr node in extract subtree nodes(zx):
5: if O(zsubtr node, x) ≥ O(zr, x):
6: zr = zsubtr node

7: # bottom up pass
8: for subtr node in extract subtree nodes(zr):
9: if removable(zr, subtr node):

10: zr = remove(zr, subtr node)
11: if O(zr, x) ≥ O(zx, x):
12: ZR.insert(zr)

which restricts their removal. Therefore, we additionally
extract a partially ordered dependency graph from the pro-
gram, and only remove nodes which are terminal in the de-
pendency graph. Figure 8 shows the expression tree and
dependency graph for a ShapeAssembly program. Addi-
tionally, for ShapeAssembly we apply this procedure itera-
tively, since each pruning operation updates the dependency
graph.

4.3. Code Grafting (CG)

The CG rewriter aims to replace sub-expressions of the
given program with more suitable expressions from a cache
of previously discovered sub-expressions. Algorithm 2 pro-
vides a high-level overview of CG, and Figure 7 shows ex-
amples of applying this rewriter.

Before After
Figure 7. We show the CG rewriter applied to 3D CSG programs.

First, sub-expressions along with their executions (in the
form of n-dimensional occupancy fields) are extracted from
all the inferred programs. All the sub-expressions are then
clustered by their execution using the FAISS [2] library (us-
ing INDEXBINARYIVF) and stored in a cache. We store
only unique executions in the cache by identifying sub-
expressions with approximately matching executions (ham-
ming distance < 100 for 3D, and < 10 for 2D) and retaining
only the shortest ‘preferred’ subexpression, while rejecting
the rest.

This step provides us our first rewrite. For each of the
rejected sub-expressions, we retrieve the programs it origi-
nated from and insert the ‘preferred’ subexpression into it.



1. bbox = cuboid(1, *, 1)
2. cube0 = cuboid(...)
3. attach(cube0, bbox, ...)
4. cube1 = cuboid(...)
5. squeeze(cube1, cube0, ...)
6. reflect(cube1, X)
7. cube2 = cuboid(...)
8. squeeze(cube2, bbox, ...)
9. reflect(cube2, X)

Cube0

cube1

cube1
reflect cube2

cube2
reflect

bbox

Dependency GraphExpression Tree

Figure 8. We show the mapping of a ShapeAssembly program to (a) its implicit equivalent expression tree and (b) its dependency graph.
The CP rewriter prunes extraneous nodes from the expression tree while also ensuring pruned nodes have no incoming dependency. For
the illustrated example, only the parts created by reflection operators are prune-able, as they are the only leaves in the dependency graph.

This rewrite results in programs which achieve similar re-
construction accuracy while having a shorter length. Lines
1-12 in Algorithm 2 correspond to these steps.

The second rewrite performed in Code Grafting aims to
replace sub-expressions in a given program to improve its
reconstruction accuracy.

We perform this rewrite in 3 steps:
1. We derive the desired execution for each sub-

expression in the program by masked function inver-
sion (described in detail ahead). Note that for each
sub-expression we only consider the desired execution
within the bounding box of its execution (line 19).

2. For each sub-expression we retrieve the k-nearest
neighbors of its desired execution from the cache as
its replacement candidates (line 20).

3. We calculate the objective O achieved by each replace-
ment, and perform the replacement which yields the
highest reconstruction accuracy (lines 21-24).

This process (step 1 to 3) is repeated until none of the re-
placement candidates improve reconstruction accuracy, or
until we perform a fixed number of replacements. Lines
14-24 in Algorithm 2 correspond to these steps.
Masked Function Inversion: Given a sub-expression A,
we derive its desired execution A∗ by masked function in-
version. We assume the given expression executes to the
given target T , and invert the expression S. The process
can be described as follows:

T ∼ S(A) (2)
T ∼ S1(S2(...Sn(A))) (3)

A∗ ∼ S−1(T ) (4)

A∗ : ∼ S−1
n (S−1

n−1(...S
−1
1 (T ))) (5)

By defining atomic inversion operations for transforms
and combinators, we can simply derive S−1 for a sub-

Algorithm 2 Code Grafting
Input: Set of programs Zx, sub-expression cache C &
Executor E.
Hyper-parameters: n, k = 10, τ = 10.
Output: Rewritten programs ZR

1: # creating the subexpression cache
2: for zx in Zx:
3: for subexpr in extract subexprs(zx):
4: match = retrieve(C, E(subexpr))
5: if match:
6: C.remove(match)
7: shorter, longer = compare(subexpr, match)
8: C.insert(shorter)
9: zr = replace(zlonger, shorter)

10: ZR.insert(zr)
11: else:
12: C.insert(subexpr)
13: # rewriting programs
14: for zx in random sample(Zx, n):
15: num rewrites = 0 & zr = zx
16: while(num rewrites < τ ):
17: candidates = []
18: for subexpr in extract subexprs(zr):
19: e∗ = desired-execution(subexpr, E(zx))
20: candidates.extend(C.get nn(e∗, k))
21: zbest = get best(candidates)
22: if O(zbest, x) ≥ O(zr, x):
23: zr = zbest
24: num rewrites += 1
25: if O(zr, x) ≥ O(zx, x):
26: ZR.insert(zr)
27: return ZR



Figure 9. CG rewriter derives desired executions (A∗ and B∗) for each sub-expression (A and B) that can be used to search a cache for
potential replacement candidates with respect to a target shape (T ). The desired execution is derived via masked function inversion, which
we show the inversion for the three boolean combinators. For each desired execution, black indicates an area that should be occupied,
white indicates an area that should not be occupied, and grey indicates invalid/masked regions.

expression A by applying the inversions of operators ap-
plied on it, to the target T . As S can potentially be com-
posed of non-invertible functions, we use a binary valid-
ity mask to identify input regions of space (Rn) that cannot
be inverted , and perform inversion only for invertible re-
gions. For transforms such as translate, rotate, scale such
masked inversions are trivial to define (e.g. S−1

translate =
−Stranslate). For boolean combinators U(A,B) we define
its inversions w.r.t. a child A as a {Target,Mask} tuple as
follows:

Union−1(T,B) = {T, Intersect(T,B)}, (6)

Intersect−1(T,B) = {T, Union(T,B)}, (7)

Diff−1(T,B) = {T, Intersect(T,B)}, (8)

Diff−1(T,A) = {T̃ , Union(T,A)}, (9)

where X stands for the complement of X , and the mask
term indicates valid regions. We provide example of the
inversions in Figure 9.
Canonical Execution: In CSG domain, all sub-expressions
executions are used in canonical form - we prepend each
subexpression with a translate and scale command such
that its execution is origin-centered and unit scale. Using
the canonical form allows us to identify sub-expressions
which are equivalent under translation/scale transforma-
tions. When the canonical sub-expressions are used for re-
placement, additional transform commands are prepended
to make it fit the target expression’s position and scale. For
ShapeAssembly domain, all sub-programs are constructed
in a unit scale cuboid by construction (their bounding box
is fixed to sizes (1, 1, 1)). We note that similar canonical
forms have been previously used in [8] as well.
Empty Node: During each CG rewrite step, we optionally
extend the input expression with a union and an empty node,
i.e. expr = Union(expr, empty). This allows us to addition-
ally consider sub-expression from the cache which, when
attached to the input expression, improve the objective.

Cache size: We randomly sub-sample the cache as its size
grows to curb the growth in memory requirement. We re-
tain 35000 subexpressions, each consisting 32×32×32 bi-
nary values, resulting in only ∼ 1 GB memory requirement.
Note that the cache entries persist over multiple search-
rewrite-train cycles, so that good sub-expressions are re-
tained and propagated once they are discovered.
ShapeAssembly: We apply CG to ShapeAssembly+, as
it allows hierarchical composition of ShapeAssembly pro-
grams. Since the simple ShapeAssembly (used in the main
draft) lacks hierarchical composition, we do not apply CG
to it. First, we apply CG to strictly replace or introduce Sha-
peAssembly sub-programs (rather than just a set of state-
ments). This allows us to treat each ShapeAssembly pro-
gram’s implicit equivalent (as defined in Section 4.1) as an
simply-typed (partially invertible) lambda expression. To
derive the desired executions, we only need to invert simple
CSG functions such as translate and union. Successful
expression replacement act as replacement (or introduction)
of entire ShapeAssembly subprograms, mapping edited im-
plicit equivalents uniquely to a ShapeAssembly program.

Note that the preconditions on the languages for apply-
ing CG are fairly simple. It requires a mapping to a typed
lambda calculus expression, which then allows us to per-
form type-matching replacements. Further, our masked in-
version procedure requires the existence of masked inverse
for each atomic operator.

5. Qualitative Results
We show qualitative comparisons between our method

and prior approaches. Our method improves reconstruction
accuracy over prior bootstrapping methods [5], and infers
programs with higher conciseness than domain specific ar-
chitectures [9].
Failure Cases: While SIRI achieves better aggregate re-
construction performance compared with previous boot-
strapped learning methods such as PLAD, and matches re-



Figure 10. We show instances of program which fail to fully reconstruct the input shape, despite test time rewriting. A common trend we
noticed is missing parts of object. Changing the rewrite objective O may help resolve this issue.

Inferred Program PO CP CG TTR 3 TTR

. . .

Input Shape

Figure 11. We show examples of the rewriter applied one at a time, and their interleaved application on inferred programs during test-
time rewriting. Each rewriter is able to perform iterative improvements on the programs, and interleaved application further improves the
program.

construction performance of domain-specific architectures
such as CSG-Stump, its outputs can still be further im-
proved. One failure mode is that of missing parts, even
after test-time rewriting (see Figure 10). We note SIRI is
not the only method that falls victim to this failure mode. A
careful tuning of the program length weighting parameter α
in the objective O, along with a part presence sensitive re-
construction metric (instead of IoU) can help alleviate these
challenges. In fact, SIRI’s use of rewriters might allow it to
uniquely solve this problem, by making use of a new class
of rewriters that identifies missing semantic parts of a target
shape, and rewrites the program with a sub-expression that
covers these missing parts.
Test time rewriting: We visualize test time rewriting in
Figure 11. As can be seen, each rewriter refines the program
and their iterative application is beneficial.
Comparison to CSGStump: We compare our method to
three variants of CSG-Stump to SIRI + TTR in Figure 12.

We note that while the class specific CSG-Stump model
may surpass the reconstruction accuracy of SIRI + TTR, its
output predictions are still overly complex and hard to rea-
son over, as reflected in the renderings with colored primi-
tives. Note that due to the high complexity of CSG Stump
programs, we color each intersection node, instead of the
primitives. Despite this, we observe that the programs are
still greatly over-parameterized.



CSGStump-32 CSGStump-256 CSGStump-256 (cs) SIRI + TTR Input Shape

Figure 12. We compare our approach (SIRI + test time rewrite) to three variants of CSGStump [9]: (a) CSGStump-32 a model trained
with 32 primitive intersection nodes, (b) CSGStump-256 a model trained with 256 primitive and intersection nodes, and (c) CSGStump-256
(cs) where a model is trained for each class (we use the pretrained weights provided by the authors).
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