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A. Implementation Details

In this section, we provide full implementation specifics
of UniTNT and divide it into three parts – (1) architecture;
(2) training procedure; (3) Scene-text information.

A.1. Architecture

We harness the model agnosticism of UniTNT and apply
it to two top-performing VL models. Specifically, we uti-
lize the publicly-available code bases of ALBEF [12]1 and
BLIP2 [11] and apply our method to them. We design our
approach in a modular way enabling simple integration into
existing models. Below we list the architectural specifics
for both UniTNTALBEF and UniTNTBLIP.

OCR Encoder We use a pretrained BERT-base3 [6]
as our encoder and introduce it with 2-dimensional in-
formation, as can be seen in Equation 1. Specif-
ically, we use three separate embedding layers (i.e.,
torch.nn.Embedding)– for the word token and its x
and y axis positions for both the OCR and the question. In
particular, we define the minimal and the maximal spatial
position as 0 and 1000, respectively, and set these values
for the question tokens (referred to as “pseudo-2D informa-
tion” in the main paper). We restrict the number of OCR and
question token lengths to 128 and 35, respectively. Next, we
sum the 2D-related embeddings and pass them in a 2-layer
MLP with a hidden dimension of 768 for additional pro-
cessing. Finally, we multiply it by α (set to 0.1) and sum it
with the token representation to obtain the final one fed into
the encoder.

*Work done during an Amazon internship.
1https://github.com/salesforce/ALBEF
2https://github.com/salesforce/BLIP
3https://huggingface.co/docs/transformers/
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Figure 1: OCR prevelance in VQAv2. Histogram of the
number of OCR instances per-image in VQAv2 dataset.

VL-OCR Decoder In order to introduce the pretrained
decoder with scene-text information, we create new OCR
Cross Attention (OCR-CA) blocks and place them in par-
allel to the existing VL ones. Such newly added compo-
nents are identical to the existing ones and initialized with
the pretrained weights of the latters’. To fuse the outputs
of the OCR CA and the VL CA, FOCR and FVL, we con-
catenate them along the channel dimension and pass them
via attention based 2-layers MLP with a hidden size of
768 to obtain Fattn, an attention map that multiplies FOCR
(FOCR ⊙Fattn). Namely, this mechanism highlights the im-
portant and meaningful features in FOCR and masks the less
relevant ones. Then, we pass the multiplication output via
a learnable gating module (by multiplying it by tanh(β),
where β is learnable and initialized to 0), aimed to gradu-
ally blend the OCR features into the existing VL one.



A.2. Training Procedure

We train all of our models to minimize
LUniTNT = Lbase + α1LOCR-LM + α2LOCR-BC using 8
A100 GPUs, where α1 and α2 are hyperparameters.

Visual Question Answering We train both UniTNTALBEF
and UniTNTBLIP on a unified Text-Non-Text VQA dataset,
containing VQAv2 [1], TextVQA [16] and ST-VQA [3] for
10 epochs using a batch size of 8 and 16 for ALBEF and
BLIP, respectively. Moreover, we set α1 = α2 = 1 and
keep the other training-related hyperparameters as in the
original papers.

Image Captioning We train UniTNTBLIP on a the uni-
fied Text-Non-Text CAP dataset, comprised of COCO Cap-
tions [4] and TextCaps [15], for 5 epochs with batch size
of 32. We set α1 = 0.05 and α2 = 0 since contrary to
VQA, CAP does not contain textual information available
both in training and inference time, making it infeasible to
implement OCR-BC. Moreover, we keep the rest of the hy-
perparameters as in BLIP.

A.3. Scene-text information

As specified in the paper, we extract the scene-text in-
formation (word tokens and 2-dimensional position) for all
the VQA and CAP datasets (both the general and scene-
text counterparts) using Amazon Text-in-Image. To bet-
ter understand the prevalence of OCR in the non-scene-text
datasets, we plot the statistics of OCR in VQAv2 in Fig. 1
(same images are in COCO Captions as well). While a large
portion of the images does not contain text in them, there is
a large amount of such with OCR (38.36% and 38.03% of
train and test images contain OCR). Since OCR conveys
meaningful information, it sheds light on the significant im-
provement of UniTNT up his baselines (ALBEF and BLIP).

B. Datasets
B.1. Visual Question Answering

VQAv2 contains 204,721 images (82,783, 40,504, and
81,434) from COCO [13], 1,105,904 questions (443,757,
214,354, and 447,793), and 6,581,110 answers (4,437,570,
2,143,540, and the test answers are held-out). Answering
the questions requires vision-language understanding and
commonsense knowledge. Each question has ten ground-
truth answers.

TextVQA contains 28,408 images from OpenIm-
ages [10], 45,336 questions and 453,360 ground-truth
answers. The annotators were instructed to formulate
questions that require reasoning from the text in the image.
As in VQAv2, each question has 10 ground-truth answers.

ST-VQA is a fusion of computer-vision datasets – Im-
ageNet [5], VizWiz [2], Visual Genome [9], IIIT Scene
Text Retrieval [14], ICDAR 2013 [8], ICDAR 2015 [7] and
COCO Text [17]. It contains 31K questions, split into train-
ing (26K) and testing (5K), requiring scene-text understand-
ing.

B.2. Image Captioning

COCO Captions contains over one and a half million
captions describing over 330,000 images from the COCO
dataset. Each image has five human-generated captions.

TextCaps is composed of 28,408 images and 142,040
captions (5 captions per image). The images are from the
TextVQA dataset, and the captions are based on the text
in the image. Specifically, models have to reason over the
scene-text information to generate correct captions.

C. The Impact of Training Data

In this section, we study the effect of the different combi-
nations of training datasets and report our findings in Tab. 1.
In particular, we experiment with UniTNT and BLIP in Vi-
sual Question Answering and Image Captioning using sep-
arate training on vision-oriented and OCR-oriented datasets
and combined training. In VQA, using both dataset types
leads to the best standalone and average performance in the
tested benchmarks. This attests to the symbiosis between
general and scene-text-oriented VQA, encouraging avoid-
ance of the common practice of separate finetuning.

However, using a unified training set in CAP leads to
the best COCO Captions and average results, but not in
TextCaps. Specifically, separate finetuning on TextCaps
achieves a CIDEr score of 130.5, compared to 119.1 in the
combined training. It corresponds with [15], which shows
that combining COCO Captions with an upsampled version
of TextCaps reduces the model’s performance on the for-
mer. It is because while training on TextCaps encourages
the model to insert OCR into the caption, training on COCO
Captions which barely contains OCR in its captions, pe-
nalizes such behavior, leading to an intrinsic tradeoff. To
better understand the effects of training models solely on
TextCaps, we qualitatively test them on COCO Captions.
Notably, we finetune both BLIP and UniTNT of TextCaps
and demonstrate their performance on COCO Captions in
Fig. 2. Our analysis shows that as TextCaps contains OCR
in all its captions, separate finetuning causes models to fix-
ate on OCR, regardless of their importance. Moreover, in
images without an OCR signal, the models sometimes hal-
lucinate text in the image. While both models showcase
similar behavior, since UniTNT has better scene-text un-
derstanding, it is more prone to such phenomena. It is
also expressed in Tab. 1, where BLIP and UniTNT trained



Method Vision-oriented
dataset

OCR-oriented
dataset

VQA
test-dev

TextVQA
val Avg.

COCO Caps
val

TextCaps
val Avg.

BLIP
✗ ✓

40.16 30.12 35.14 84.8 112.7 98.8
UniTNTBLIP 37.01 50.19 43.60 70.4 130.5 100.5
BLIP

✓ ✗
76.39 20.50 48.45 133.3 59.4 96.4

UniTNTBLIP 79.68 36.33 58.01 133.7 59.6 96.7
BLIP

✓ ✓
77.40 32.43 54.92 133.4 101.4 117.4

UniTNTBLIP 79.90 55.21 67.56 134.0 119.1 126.6

Table 1: The impact of training data. We show the effect of each dataset configuration for training UniTNT and BLIP.

on TextCaps obtain 84.8 and 70.4 on COCO Captions, re-
spectively. Despite the improved performance on TextCaps
when performing separate finetuning on it, our findings
highlight its drawbacks. Thus, we claim that also in CAP,
combined training should be applied.

From a general view, we hypothesize that since numer-
ous valid captions exist for a given image, both with and
without OCR, the model struggles to decide whether to
use the OCR in its caption. Due to the datasets’ sizes
in combined training that favors the vision-oriented ones,
the model opts to reduce its use of OCR, not fully max-
imizing its performance on TextCaps. It is contrary to
VQA, where the conditioning over the question makes it
easier for the model to decide whether to use OCR or
not (e.g., "What is written in the sign?" ver-
sus "What color is this shirt?").

D. Qualitative Analysis
Visual Question Answering We provide an additional
qualitative demonstration of UniTNT and compare it to
BLIP and M4C on both TextVQA validation set (Fig. 3)
and VQAv2 test set (Fig. 4). We depict in the four left-
most columns success-cases and the rightmost, fail cases,
and color in green the correct answers and red, incorrect
ones. Moreover, we divide the figures such that the upper
part corresponds with the benchmark’s goal (VQAv2 – see,
TextVQA – read) and the lower one with the counterpart
goal (VQAv2 – read, TextVQA – see). These results fur-
ther demonstrate that UniTNT is capable of reasoning over
both visual and scene-text information, while other compet-
ing methods perform unsatisfactorily on at least one of the
benchmarks. Moreover, as the visualizations in Fig. 4 tes-
tify, granting scene-text understanding also benefit VQAv2,
corresponding with the quantitative evidence in the main
paper. It is demonstrated in the bottom part of the figure,
where the OCR is crucial for answering the questions or
providing meaningful information that facilitates answering
them.

Image Captioning Similar to the VQA demonstration,
we present a visualization of UniTNT performance on

TextCaps (Fig. 5 and COCO Captions (Fig. 6) and compare
the performance to M4C and BLIP. On the left columns, we
show images where our method outperforms the other meth-
ods, and on the right, its failure cases. Moreover, we list
the CIDEr scores of each prediction and color in green the
highest one. These findings attest that BLIP is incapable of
incorporating scene-text information, which results in rel-
atively low CIDEr results. Interestingly, M4C is too over-
fitted for TextCaps, causing it to fail completely on COCO
Captions where OCR is scarce. Specifically, it focuses on
the OCR regardless of their importance (e.g., the third ex-
ample in the last row of Fig. 6) and thus provides an ir-
relevant caption. Despite the intrinsic tradeoff described in
the paper between TextCaps and COCO Captions, UniTNT
is capable of providing adequate captions for both bench-
marks. Specifically, our method is the only one to cope sat-
isfactorily on both benchmarks altogether and is capable of
harnessing both scene-text and visual information.



Figure 2: Qualitative demonstration of the effects of finetuning on TextCaps. BLIP and UniTNT results of COCO
Captions when finetuned solely on TextCaps. In some cases, scene-text understanding helps the models, but it also leads to
over-reliance on the OCR signal and even to the hallucination of OCR. While such phenomena occur in both models, it is
more prevalent in UniTNT due to its better scene-text understanding.



Figure 3: Qualitative demonstration on TextVQA validation. UniTNT, M4C, and BLIP answers, containing both success
(left) and fail (right) cases of our method on image-question pairs that require mainly reading (top) and ones that require also
visual reasoning (bottom).



How many blue buttons 
are on this remote control?

M4C:
BLIP:
Ours:

4
6
5

How many different 
directions signs are there?

M4C:
BLIP:
Ours:

2
10
9

What is sitting next to the 
phone on a piece of 
paper?
M4C:
BLIP:
Ours:

unanswerable
calculator
penny

How many people are 
there?

M4C:
BLIP:
Ours:

1
5
4

Who is this fun for?

M4C:
BLIP:
Ours:

fun
frisbee player
kids

Which hand is in the 
picture?

M4C:     
BLIP:      
Ours:              

Where are the standing 
man’s hands?

M4C:
BLIP:
Ours:

in the world
in his hands
in front of cake

What is the black strip on 
the card?

M4C:
BLIP:
Ours:

vga
label
goteborg

What phone number is 
on the sign?

M4C:
BLIP:
Ours:

-326
5616296
9219888

What restaurant is this?

M4C:
BLIP:
Ours:

unanswerable 
nathan’s 
mcdonald’s

Where are the pizza 
boxes from?

M4C:
BLIP:
Ours:

the pizza
domino’s pizza
pizza hut

What brand is the floss?

M4C:
BLIP:
Ours:

arvantage
sensodyne
oral-b

What does the red sign 
say?

M4C:
BLIP:
Ours:

kiddie love
no red sign
restaurant

What are the last two 
letters on the card?

M4C:
BLIP:
Ours:

vga
l
se

How many bikes?

M4C:
BLIP:
Ours:

15
2
1

Why is this man sitting 
down?

M4C:
BLIP
Ours:

unanswerable
he’s coach
resting

Who is the caption 
implying is doing the 
talking?
M4C:
BLIP:
Ours:

alaskan 
no one
bear

What brand is the 
laptop?

M4C:
BLIP:
Ours:

fx
apple
dell

left
left
right

Where is the food from?

M4C:
BLIP:
Ours:

at johns
pizza hut
papa johns

What die the sign in the 
scene say?

M4C:
BLIP:
Ours:

be in rather home
do not feed dog
i’d rather be at 
home

What utensils are used to 
eat this food?

M4C:
BLIP
Ours:

pizza
fork and knife
fork

What is the driver doing?

M4C:
BLIP
Ours:

ii
turning
racing

What is the dog laying 
on?

M4C:
BLIP
Ours:

art
bed
couch

What is the bathroom 
theme?

M4C:
BLIP
Ours:

for a
no idea
ducks

What is inside the plastic 
container?

M4C:
BLIP
Ours:

unanswerable
beads
hum

Figure 4: Qualitative demonstration on VQAv2 test. UniTNT, M4C, and BLIP answers, containing both success (left) and
fail (right) cases of our method on image-question pairs that require mainly vision (top) and ones that require also scene-text
understanding (bottom).



Figure 5: Qualitative demonstration on TextCaps. UniTNT, M4C-Captioner, and BLIP answers, containing both success
(left) and fail (right) cases of our method alongside the per-caption CIDEr score.



M4C: a picture of a woman 
in a suit with a sign that says 
"say say cheese!" (0)

BLIP: two stuffed animals 
sitting next to each other on 
a chair (52.3)

Ours: two stuffed animals 
are sitting next to a book 
(99.3)

M4C: a large white sign that 
says "no parking" on it (10.9)

BLIP: a man riding a 
skateboard up the side of a 
ramp (69.0)

Ours: a man flying through 
the air while riding a 
skateboard (180.4)

M4C: a white car with the 
word "no" on it (2.5)

BLIP: a man riding a wave on 
top of a surfboard (123.4)

Ours: a man riding a 
surfboard on top of a river 
(181.8)

M4C: a white car with the 
number 3 on it (0.5)

BLIP: a group of people 
sitting on top of a sandy 
beach (59.2)

Ours: a group of people on 
the beach under an 
umbrella (162.6)

M4C: a sign that says vote & 
laduke on it (0.1)

BLIP: a man sitting at a table 
with a plate of food (42.8)

Ours: a man in a green shirt 
holding a glass of wine 
(186.2)

M4C: a book called warcraft 
is on a table with a picture 
of a person in the 
background (5.0)

BLIP: a brown teddy bear 
sitting on top of a desk 
(156.7)

Ours: teddy bear wearing 
headphones sitting on a 
desk (189.5)

M4C: a picture of a woman 
and a yellow and white 
dress with the word "middle 
middle" on it (0.2)

BLIP: a couple of people that 
are holding a skateboard 
(7.8)

Ours: a man holding a 
snowboard next to another 
man (196.4)

M4C: a large number of a 
train is on the ground with a 
red and white sign that says 
"sample" (0.4)

BLIP: a person holding a 
piece of fabric in their hand 
(41.7)

Ours: a person holding a tie 
in their hand (205.5)

M4C: a large white and red 
sign that says 'd' on it (0.4)

BLIP: a man sitting at a table 
with a plate of food (68.5)

Ours: a man in a tie is 
smiling for the camera 
(116.7)

M4C: a picture of a man 
with the number 3 on it 
(1.7)

BLIP: a bathroom with a 
washer and a window (23.9)

Ours:  a bathroom with a 
washer and dryer in it (20.9)

M4C: a small white sign that 
says "w" on it (1.5)

BLIP: a group of people 
standing in a room (27.7)

Ours: a man and a woman 
standing next to each other 
(17.3)

M4C: a green sign that says ' 
no parking ' on it (6.7)

BLIP: a group of people 
walking across a street next 
to a tall building (16.4)

Ours:  a group of people 
walking across a street 
(14.7)

Figure 6: Qualitative demonstration on COCO Captions. UniTNT, M4C-Captioner, and BLIP answers, containing both
success (left) and fail (right) cases of our method alongside the per-caption CIDEr score.
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