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A. Preliminary Knowledge
A.1. Detail of Vector-Quantization Module

This module draws inspiration from the well-known VQ-
GAN [2]. Our aim is to reduce the learning complexity and
expedite the inference process during the coarse segmenta-
tion phase. Therefore, we execute the segmentation within
a low-dimensional vector-quantized latent space. Beyond
what is mentioned in the main paper, the training objec-
tive is to identify the optimal compression model Q∗ =
{E∗, G∗,Z∗}, which can be expressed as:

Q∗ = argmin
E,G,Z

max
D

Ex∼p(x)[LVQ(E,G,Z)

+λLGAN({E,G,Z}, D)] ,

where

LVQ(E,G,Z) = Lrec + ∥sg[E(x)]− zq∥22
+ β ∥sg [zq]− E(x)∥22

and

LGAN({E,G,Z}, D) = [logD(x) + log(1−D(x̂))]

The adaptive weight λ is computed as:

λ =
∇GL

[Lrec]

∇GL
[LGAN] + δ

In this context, Lrec represents the perceptual reconstruc-
tion loss [7]. The symbol sg[·] indicates the stop-gradient
operation, while ∥sg [zq]− E(x)∥22 is referred to as the
commitment loss and has a weighting factor of β [5]. The
notation ∇GL

[·] signifies the gradient of its input with re-
spect to the last layer L of the decoder. For numerical sta-
bility, we employ δ = 10−6.

In our experiments, we fixed the codebook size |Z| at
256 across all datasets. We also omitted the attention layer
from the original model. The entire iteration process for the
four datasets is configured at 100k.

†: Co-corresponding authors.

A.2. Detail of Iterative Inference

Inspired by MaskGIT [1], the mask-and-predict proce-
dure facilitates natural sequential decoding during infer-
ence. Beginning with a token sequence that masks all
amodal segments, our transformer incrementally completes
the amodal segments, preserving the most confident predic-
tion with each step. In detail, to produce a coarse mask at
inference time, we commence with a blank canvas where all
tokens are masked, denoted as Y

(0)
M (where YM represents

the result after applying mask M to Y ). For iteration t, our
transformer operates as:

1. Parallel Prediction: Starting with the current set
of masked tokens, Y (t)

M , the transformer predicts the like-
lihoods for all masked positions at once, producing a prob-
ability matrix p(t) ∈ RN×K .

2. Token Sampling with Confidence Scoring: At ev-
ery masked location, a token is sampled based on its associ-
ated probabilities. This token’s prediction score is taken as a
confidence measure, showing the model’s trust in its predic-
tion. Positions that are already unmasked are automatically
given full confidence, scored at 1.0.

3. Dynamic Masking: The number of tokens that should
remain masked in the next iteration is computed using the
mask scheduling function γ. This accounts for the input
length N and the progression of iterations t relative to the
total T .

4. Update Masking Strategy: Tokens in Y
(t)
M are then

updated for the next iteration. Only tokens with lower con-
fidence scores are re-masked, as determined by a threshold
value derived from the sorted confidence scores. This en-
sures that the transformer focuses on refining less confident
tokens in the subsequent iteration.

The Iterative Inference assembles a coarse amodal mask
in K steps. During each iteration, the transformer antici-
pates all tokens concurrently, yet retains only the most con-
fident selections. Subsequent tokens are masked again and
re-predicted in the following iteration. The mask ratio di-
minishes until all tokens are formulated within K iterations.
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Figure 1. Supports for shape prior.

B. Table of Ablation Study for K

We have carried out an ablation study to investigate the
impact of K on our model. The performance of our model,
across different values of K, on the COCOA and MOViD-A
datasets, is detailed in Table 1.

K
COCOA MOViD-A

mIoUfull mIoUocc mIoUfull mIoUocc

1 80.16 27.70 71.91 36.57
2 80.27 27.68 71.67 36.30
3 80.28 27.71 71.67 36.13
5 80.28 27.60 71.58 35.88
8 80.31 27.57 71.46 35.53
10 80.24 27.28 71.42 35.60
12 80.27 27.44 71.41 35.44

Table 1. Ablation results for K on COCOA and MOViD-A.

C. Further Ablation Studies
In order to further evaluate the effectiveness of our model

both on image and video datasets, we conduct the following
two experiments.

C.1. Effect of Time Rolling in Transformer

We also investigate the effectiveness of Spatial Tempo-
ral(ST) module used in our video version of C2F-Seg. The
ST module is proposed in [3] and we modify the module
with an extra roll mechanism which will help C2F-Seg to
model the whole video, and make full use of transformer to
extract spatiotemporal information features over long dis-
tances. In this part, we evaluate the effect of each module.
We train our model with full ST module, without ST mod-
ule, and without roll mechanism respectively on the two
video datasets. The results are shown in Table 2. Results
indicate the effectiveness of the ST module as well as our
introduced roll mechanism.

C.2. The Effect of Attention Mechanism in Refine-
ment Module

To investigate the effectiveness of the attention calcu-
lated in our proposed refine module, we train C2F-Seg
with and without calculating attention separately on KINS

METHODS
Fishbowl MOViD-A

mIoUfull mIoUocc mIoUfull mIoUocc

w/o ST module 89.64 78.93 67.19 26.48
w/o roll 90.91 80.01 69.92 32.35
full model 91.68 81.21 71.67 36.13

Table 2. Ablation results for our STTB module for Video task.
We report the mean-IoU metric for Fishbowl and MOViD-A to
evaluate our design for spatio-temporal feature.

METHODS
KINS COCOA

mIoUfull mIoUocc mIoUfull mIoUocc

w/o attn 82.07 52.98 80.15 26.85
w. attn 82.22 53.60 80.28 27.71

Table 3. Ablation results for the attention mechanism. Mean-
IoU metrics on KINS and COCOA to evaluate this mechanism.

and COCOA. Table 3 shows the mIoU metrics for the two
datasets. The results indicate our attention mechanism im-
proves the quality of amodal masks.

D. Supports for the claim of shape prior
Our claim of shape prior is based on a common phe-

nomenon, which is supported by Fig. 1 showcasing six ran-
domly selected cases. In the figure, the arrangement from
top to bottom includes the images, the visible masks, and
the amodal masks. Specifically, (a) is from KINS, (b) is
from COCOA, and the remaining cases are from MOViD-
A. We can observe that:

(1) The visible masks of these cases exhibit significant
differences compared to their corresponding amodal masks
due to occlusion caused by different poses.

(2) Besides, viewpoint variations may lead to differences
in the shape prior. This is exemplified by cases (b)-(d),
where the shape prior differs from the original in regular
view.

E. More Qualitative Results
In order to more intuitively illustrate the strengths of our

algorithm, and to compare it with the baselines, we select
KINS and MOViD-A to show more qualitative results to
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Figure 2. The qualitative results estimated by VRSP, AISFormer, and our method. GT indicates ground-truth amodal mask.

demonstrate the effectiveness of our method.

E.1. Visualization on KINS Dataset

To show the performance of our method on real sce-
narios, we show more results from KINS in Figure 2. In
these images, for fair comparison, we select the intersec-
tion of the amodal masks predicted by VRSP [6] and AIS-
Former [4]. Our algorithm completes the occluded cars bet-

ter than all the baselines on KINS, which will help to im-
prove the safety of autonomous driving significantly if ap-
plied to real scenarios.

E.2. Visualization on MOViD-A Dataset

We show the qualitative results estimated by the
best baseline video and image-based amodal method on
MOViD-A respectively in Figure 3. Our method predicts



the invisible masks excellently by extracting valid spatio-
temporal features and outperforms all the baselines.

F. Limitations and Future Works
We propose a coarse-to-fine framework that leverages

shape prior for amodal segmentation. Despite it has
achieved significant advantages in both image and video-
based benchmarks, our proposed C2F-Seg still faces several
limitations. One is the additional input of the pre-detected
visible mask. It is essential but not efficient, since we need
to specify the target when multiple objects occur in the same
scene. In future work, we will either replace it with a sin-
gle point or incorporate our framework with an end-to-end
detection branch, to effectively decrease the input require-
ment. Another limitation may lie in objects which are heav-
ily or fully occluded. Though our introduced Spatial Tem-
poral Transformer Block successfully mitigates this prob-
lem by aggregating multi-frame shape priors, amodal masks
of some frames are not precise due to the ill-posed problem.
We will explicitly design modules to utilize spatio-temporal
prior and constraint the consistence of masks between adja-
cent frames.
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Figure 3. The qualitative results estimated by SaVos, AISFormer,
and our method. GT indicates ground-truth amodal mask.


