Supplementary for DIFFGUARD: Semantic Mismatch-Guided
Out-of-Distribution Detection using Pre-trained Diffusion Models

A. Implementation Details of DIFFGUARD

Pre-trained Weights of Diffusion Models. On CIFAR-
10, we use the same pre-trained model as DiffNB!, which
is a conditional DDPM [2] with classifier-free guidance.
On IMAGENET, we use the unconditional Guided Diffusion
Model (GDM) [1] and apply classifier guidance”. While for
Latent Diffusion Model (LDM) [5], we use the model pre-
trained on IMAGENET? with classifier-free guidance.

Similarity Metric. To measure the similarity of image
synthesis and the input, we adopt several similarity met-
rics [3], together with the logits from the classifier-under-
protection as a commonly considered measure for out-of-
distribution (OOD) detection [4]. Table A shows the met-
rics we consider for different benchmarks.

In general, we find that DISTS performs well on IM-
AGENET. Compared to other low-level metrics (e.g., /o),
DISTS provides more robust image-space comparisons. For
instance, if the generated image displays different bright-
ness levels from the input, DISTS can offer a more consis-
tent comparison than ¢5. This is also evidenced by LDM,
where DISTS consistently outperforms ¢>. By contrast,
since many similarity metrics (e.g., DISTS, LPIPS) apply
pre-trained weights on IMAGENET as the feature extractor,
they may not be suitable for CIFAR-10 directly. Thus, the
logits distance works best on CIFAR-10. This result also
enables a direct comparison between our DIFFGUARD and
DiffNB [4] (in Table 1), where logits are also utilized as the
distance metric.

It is important to note that in the main paper, we report
the result only with one generic metric on different bench-
marks, without combining different similarity metrics. In
practice, it is feasible to combine multiple metrics for judg-
ment. Such a combination can be either the one employed
in Sec. 4.2 and Sec. 4.3, where distinct metrics are treated
as additional baselines; or the one presented in [7], where
various metrics are taken into account, and the rejection of
OOD is based on any of them (i.e., work in a tandem man-
ner for OOD rejection).

Uhttps://github.com/luping-liu/DiffOOD
Zhttps://github.com/openai/guided-diffusion
3https://github.com/CompVis/latent-diffusion

benchmark  model metrics DDIM steps
CIFAR-10 DDIM  logits 50

IMAGENET GDM  DISTS 100

IMAGENET LDM  DISTS 25

Table A. Detailed settings of DIFFGUARD in the main paper for
the different benchmarks, including similarity metrics and DDIM
timesteps.

DDIM timesteps. In Table A, we present the DDIM
timesteps utilized in Table 1 and Table 2 of the main paper.
Specifically, for CIFAR-10, we opt for the same settings as
DiffNB [4], using DDIM-50. According to Sec. 4.4, LDM
is preferable for fewer DDIM timesteps, resulting in faster
inference. In comparison, GDM typically performs better
with more DDIM timesteps. To balance the speed and OOD
detection performance, we adopt DDIM-100 in the main pa-
per.

method | OOD dataset | AUROC 1 FPR@95 |

Species 87.35 54.97

iNaturalist 94.15 31.60

GDM(oracle) | Openlmage-O 90.97 45.94
ImageNet-O 86.22 62.20

average 89.67 48.67

Species 97.38 14.41

iNaturalist 97.76 12.71

LDM(oracle) | Openlmage-O 95.12 25.12
ImageNet-O 95.97 22.60

average 96.56 18.71

Table B. Results for applying the oracle classifier with DIFF-
GUARD on the IMAGENET benchmark.

B. Use of the Oracle Classifier on IMAGENET

In Sec. 4.2, we presented the performance of DIFF-
GUARD on the CIFAR-10 benchmark using an oracle clas-
sifier. In this section, we demonstrate how DIFFGUARD
performs on the IMAGENET benchmark with the help of an
oracle classifier, as shown in Table B. We utilized the same
settings as in Table 2. Our results indicate that the perfor-



mance of LDM and GDM can be significantly improved
with an oracle classifier. Since the oracle classifier only pro-
vides the predicted label, while GDM relies on the gradient
from the classifier, we resort to classifier-under-protection
for gradient (i.e., ResNet50). Therefore, its performance
may be limited by the incorrect gradient estimation from
the classifier. On the other hand, LDM employs classifier-
free guidance, and therefore, both AUROC and FPR@95
demonstrate a significant improvement.

C. More Qualitative Results

Fig. B and Fig. C display the image syntheses by DIF-
FGUARD with LDM and GDM, respectively. The vi-
sualization reveals that DIFFGUARD can effectively pro-
duce analogous images in InD scenarios, while emphasiz-
ing the semantic mismatch in OOD scenarios. Regarding
the comparison between GDM and LDM, we notice that
GDM occasionally incorporates unrealistic features from
the classifier-under-protection in the synthesized images,
while LDM consistently generates photo-realistic synthe-
ses, even in OOD cases. Such a phenomenon on GDM mo-
tivates us to employ adaptive early-stop (AES) in Sec. 3.2.1,
Tech #2. Despite that LDM sometimes alters InD samples,
GDM does not. This further justifies DIFFGUARD to extract
and use the information from the classifier-under-protection
for LDM, as stated in Sec. 3.2.2, Tech #3. As shown in
Fig. B, only certain details are modified after applying DIF-
FGUARD with Tech #3, while the main structure and content
are preserved.

D. Failure Case Analysis

We present some failure cases of DIFFGUARD in Fig. A.
For InDs, these failures are mainly due to image synthe-
sis problems. For example, we observe some test cases
exhibit different fields of view from common cases, which
makes DIFFGUARD difficult to maintain their original con-
tent. Additionally, certain classes (e.g. jellyfish and front
curtain) tend to be monochrome or dark, which could cause
generative models to fail in synthesizing such images. To
address these issues, better generative models may help.

Regarding OODs, the major problem is that some cases
appear visually similar to InD classes, or the area of seman-
tic mismatch is limited. It is worth noting that DIFFGUARD
can successfully depict the target semantics in these cases,
but the image synthesis still looks similar to the input, re-
sulting in difficulty to detect them by similarity measure-
ments. To solve such cases, one possible solution is to uti-
lize better similarity metrics for detailed comparisons (e.g.
feature distance from a model trained with contrastive learn-

ing [6]).
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Figure A. Some failure cases for DIFFGUARD. DIFFGUARD may
fail when image synthesis fails for InDs or when the content of
OOD:s is indeed visually similar to InDs’ semantics.
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Figure B. Visualization for InD and OOD cases with their syntheses according to the predicted labels. Images are from the IMAGENET
benchmark. We use LDM in this figure, i.e. classifier-free guided diffusion. We can identify a clear similarity difference between InDs and
OODs by comparing the inputs with their syntheses.
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Figure C. Visualization for InD and OOD cases with their syntheses according to the predicted labels. Images are from the IMAGENET
benchmark. We use GDM in this figure, i.e. classifier-guided diffusion. We can identify a clear similarity difference between InDs and
OODs by comparing the inputs with their syntheses.



