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A. Proof of Equations
Lemma 1 If all elements in A are integers, then the fol-
lowing equation holds:

[A+B] = A+ [B] (1)

Proof: By definition. □

Lemma 2 If all elements in A are integers and θ ∈
{kπ

2 }3k=0, then all elements in ARθ are integers.
Proof: By considering the rotation matrix R kπ

2
when

k = 0, 1, 2, 3. Note that x′ = x cos θ + y sin θ, y′ =
−x sin θ + y cos θ and z′ = z. When k = 0, 1, 2, 3, sin θ
and cos θ produces integer values. According to the prop-
erty of integer fields, x′, y′ and z′ are also integers, which
means all elements in ARθ are integers. □

Proof of Equation 2 Here we prove:
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Proof: Assume the bounding box y is centered at c ∈
R3×1 with dimension d ∈ R3×1 and yaw ϕ ∈ R. Since
the spatial translation does not affect the relative position of
voxels and bounding boxes, here we can only consider the
effect of random rotation around the upright-axis θ. Since
we have:
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By noting that,
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And that,
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Then we have,
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The rotation around the upright-axis does not affect z-
coordinates, so it is trivial that,
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6 = δA6 . (7)

The rotation does transform the yaw angle from ϕ to ϕ− θ,
hence we have:
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By noting that when θ ∈ {kπ
2 }3k=0, sin(2θ) ≡ 0. That

produces,
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Eq. 16, Eq. 17 and Eq. 19 can be combined to form
Eq. 12. □

Proof of Equation 8 Here we prove:

[{A}Rθ + {∆r}+ r⃗′] = 0 (10)

We start from Eq. 7 from the main paper:

[ARθ,∆r + r⃗′] = [[A]Rθ,∆r] (11)

By defactoring ARθ,∆r into ARθ +∆r, we have:

[ARθ +∆r+ r⃗′] = [[A]Rθ +∆r] (12)

Noting all elements in [A] are integers, hence by assum-
ing θ ∈ {kπ

2 }3k=0 and applying Lemma. 2, all elements in
[A]Rθ are also integers. Then by Lemma. 1, we have:

[ARθ +∆r+ r⃗′] = [A]Rθ + [∆r] (13)

Leveraging the property that X = [X] + {X}, we have:

[([A]+{A})Rθ+[∆r]+{∆r}+r⃗′] = [A]Rθ+[∆r] (14)

A simple deformation of this equation yields:

[[A]Rθ + [∆r] + {A}Rθ + {∆r}+ r⃗′] = [A]Rθ + [∆r]
(15)

By Lemma. 1, we move the term [A]Rθ + [∆r] out of the
left-hand side, and that yields:

[{A}Rθ + {∆r}+ r⃗′] = 0 (16)

That is the exact form as Eq. 8 in the original paper.□

Solution to Equation 10 Here we find the solution γ0 of:

γ0 = argminγ∈[0,Sv]3 ||γ − {A}Rθ − {∆r}||2 (17)

We start by considering cases for unary functions. We
find the solution ϕ0 of:

ϕ0 = argminϕ∈[a,b] ||ϕ−M||2 (18)

The solution is straight-forward. It denotes the closest value
in [a, b] to a fixed value M . We represent the solution to this
problem as:

clamp(M, a,b) =


a, M < a,

M, a ≤ M < b,

b, M ≥ b.

(19)

Since in the target function of this problem, the three axes
are uncorrelated, we can break this problem to a problem set
of three problems each equivalent to Eq. 10. We can extend
the clamping function to a vector version, namely for any
0 ≤ i < len(M) :

clamp(M,a,b)i = clamp(Mi,ai,bi) (20)

Then the closed-form solution of γ0 can be formulated as:

γ0 = clamp(M = {A}Rθ + {∆r}, (0, 0, 0), (Sv,Sv,Sv))
(21)

That is the solution to the original problem. □

B. Hyperparameter Study
τcenter and τcls. We conducted a hyperparameter study

(Fig. 1) on τcenter and τcls. These two hyperparameters are
utilized to filter the initially matched set and provide match-
ing pairs that offer less noisy supervision. Finding the opti-
mal values involves a trade-off, as setting the values too low
introduces noisy supervision, while setting them too high
reduces the number of matched pairs.
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Figure 1: Hyper-parameter Study on τcenter and τcls.

Backbone (Semi-supervised Setting) mAP@0.25 mAP@0.50

FCAF3D (baseline) 58.2 42.1

FCAF3D (+ Sparse Proposal Matching) 62.0 44.2

FCAF3D (+ Dense Matching, ours DQS3D) 64.3 48.5

TR3D (baseline) 62.5 46.8

TR3D (+ Dense Matching) 65.4 49.9

Table 1: Comparison of Dense Matching and Proposal
Matching Strategies with Different Backbones on ScanNet
Dataset (20% Labeled). Proposal matching involves filter-
ing teacher proposals and matching them with the nearest-
center student predictions, while dense matching estab-
lishes matching based on spatially-aligned voxel anchors
and then applies filtering. In dense matching, the proposed
Quantization Error Correction module is enabled.

Different Backbones. We conducted experiments
(Tab. 1) that show the superiority of dense matching over
proposal matching. We argue that the success is origi-
nate from addressing issues like no supervision and mul-
tiple supervision problems, which we also qualitatively il-
lustrate in Fig. 6. Note that dense matching is applicable



only to recent SOTA voxel-based detectors, not common
two-stage proposal-based detectors based on Transformer
or heatmaps. Hence we used TR3D (Rukhovich et al.), with
the hyperparameters reported in our manuscript without fur-
ther tuning. Remarkably, we observed an improvement of
+3.1% on mAP@0.50.

C. Further Discussion
Computational Complexity Analysis. We utilized the
NVIDIA GeForce RTX 2080Ti. Training employed 4 GPUs
(2 labeled and 2 unlabeled scenes per GPU card, occupying
approximately 7.5GB per GPU) and took around 7 hours to
converge. In terms of inference speed, our system achieves
10.3 scenes per second on a single 2080Ti.

Limitation Analysis. The trade-off between memory and
voxel size hampers our 3D detectors’ performance in out-
door scenes, which is a common limitation in the family of
sparse convolutional detectors.


