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A. Boosting Tracking Performance

For the tracking-by-detection paradigm, with the devel-
opment of the Object Detection task, they upgraded the de-
tector used in MOT from Faster R-CNN [4] to YOLOX [1]
and obtained impressive detection performance. Although
Deformable-DETR [8] has competitive detection perfor-
mance, it still lags behind some popular detectors such as
YOLOX [1]. This will impair the final tracking perfor-
mance.

Recently, unlike the original Deformable-DETR [8],
some methods [7] generate the position embeddings from
the learnable anchors. On the one hand, this design will
improve the model’s detection performance, as discussed in
many object detection studies [2]. On the other hand, the
anchor-based position-prior is quite effective for tracking
due to frame continuity.

Therefore, as discussed in Section 4.2, we built our
MeMOTR upon DAB-Deformable-DETR [2] instead of
Deformable-DETR [8]. We believe that better detection
performance of DAB-Deformable-DETR will lead to bet-
ter tracking performance, as shown in Table 1 (#2 vs.
#5). We discuss that DAB-Deformable-DETR can be ap-
plied in future works as a technology development (like
from Faster R-CNN [4] to YOLOX [1] in the tracking-
by-detection paradigm). For a fair comparison with pre-
vious transformer-based methods [3, 6], we also provide
the results of MeMOTR based on the standard Deformable-
DETR in Table 1 (main page) and 1 (#2 and #3). This in-
dicates our method still has impressive performance with-
out DAB-Deformable-DETR. As ablation experiments in
MOTRv2 [7], we further add the anchor-based position gen-
eration process to the standard Deformable-DETR in our
method, thus slightly improving the tracking performance
(Table 1 #3 vs. #4).

Moreover, we also add the YOLOX [1] proposal to our
model following MOTRv2 [7]. As they concluded, this sig-
nificantly improves the detection and tracking performance
simultaneously (Table 1 #8). Since the proposals are gener-
ated from a frozen CNN-based model, it makes the whole
model a non-fully-end-to-end method. For this reason, we

list MOTRv2 [7] in Table 2 as a new hybrid architecture.

In summary, we provide the cumulative improvements
over MOTR [6] on the val and test set of DanceTrack [5],
as shown in Table 1. This further verifies the effectiveness
of our various components and gives a more intuitive com-
parison.

B. Comparison on Difficult Sequences

In order to further certify the improvement of our method
on target association challenge, we list experimental met-
rics on some challenging sequences. We selected eight se-
quences with the lowest AssA metric of MOTR [6] on the
DanceTrack [5] validation set. As shown in Table 2, the
association results on these complex sequences are unsatis-
factory (23.6 average AssA), although the detection perfor-
mance is passable (65.8 average DetA). Our method sub-
stantially improves the performance of object association
(35.5 vs. 23.6 AssA) while slightly improving detection
performance (70.9 vs. 65.8 DetA). However, compared
to the overall association performance (58.4 AssA of our
method), there is still a significant deficiency in the re-
sults of these challenging sequences. Therefore, we suggest
that improving the object association performance of multi-
object tracking is still an unsolved problem that should not
be ignored.

C. More Visualizations

In this section, we supply additional visualization re-
sults. Same as Figure 4 in our main paper, we utilize t-
Distributed Stochastic Neighbor Embedding (t-SNE) to vi-
sualize track embeddings. More visualizing results are pro-
vided in Figure 1, the upper (Figure 1(a) to 1(d)) is from
dancetrack0025, and the lower (Figure 1(e) to 1(h)) is from
dancetrack0034 sequence. These results further verify that
our long-term memory and memory-attention layer help
learn a more stable and distinguishable representation for
the tracked target.



# Row val set test set
HOTA DetA AssA MOTA IDF1 HOTA DetA AssA MOTA IDF1

1. MOTR (baseline) 51.7 69.4 38.7 75.6 49.7 54.2 73.5 40.2 79.7 51.5

2. #1 + memory-augment 56.5 70.4 45.5 78.4 58.8 62.5 77.0 50.9 85.1 63.5
3. #2 + Ld,Lj = 1, 5 61.0 71.2 52.5 79.2 64.1 63.4 77.0 52.3 85.4 65.5
4. #3 + Anchor 61.1 73.0 51.3 81.3 63.8 64.6 78.4 53.4 87.6 67.3
5. #2 + DAB-D-DETR 62.1 74.3 52.2 83.1 65.6 65.9 78.8 55.2 87.9 68.9
6. #5 + Ld,Lj = 1, 5 63.9 74.6 55.0 83.4 67.1 68.5 80.5 58.4 89.8 71.2
7. #5 + Ld,Lj = 2, 4 63.2 73.8 54.3 81.9 65.8 66.2 80.2 54.8 89.5 68.7
8. #6 + YOLOX [11] 66.8 78.7 57.0 88.1 70.5 70.0 81.8 60.1 90.3 72.5

Table 1. Supplemental comparison on DanceTrack [5]. Best viewed in color. The same base color results represent using the same DETR
framework (D-DETR [8] or DAB-D-DETR [2]). Ld and Lj are the numbers of detection and joint decoder layers in Figure 1 (main page),
respectively. It should be noted that except for the baseline (#1), training augmentations (track query erasing and false positive inserting in
MOTR [6]) are removed from other experiments.

(a) w/o memory and w/o attention (b) w/o memory and w/ attention (c) w/ memory and w/o attention (d) w/ memory and w/ attention (ours)

(e) w/o memory and w/o attention (f) w/o memory and w/ attention (g) w/ memory and w/o attention (h) w/ memory and w/ attention (ours)

Figure 1. Visualizing track embedding Et
tck from the first 50 frames of dancetrack0025 (upper) and dancetrack0034 sequences (lower).

Track embeddings for different tracked targets (IDs) are marked in different colors and shapes. The visualizations of our method are shown
in Figure 1(d) and 1(h).
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