
Appendix

1. Ablation Studies on Tensor Factorization
Strategies

# Comp PSNR ↑ SSIM ↑ # Param.(M) ↓
Multi(0.6, 0.3, 0.15) 24 33.24 0.963 7.07
Single(0.3) 96 33.02 0.963 9.15
VM-Cloud (0.3) 6 32.59 0.959 11.36
VM-Cloud (0.3) 12 32.99 0.962 21.64

Table 1: (a) Comparisons on our method pairing with dif-
ferent factorization strategies, e.g., CP decomposition and
vector-matrix (VM) decomposition (row 2 vs 3,4). The lo-
cal tensors’ edge lengths are all set as 0.3. (b) We also com-
pare a single-scale model with a multi-scale model (row 1
vs 2). We evaluate these settings on the NeRF Synthetic
dataset [8] and evaluate them with both rendering quality
and model capacity (#Param. denotes the number of pa-
rameters).

Other than CP decomposition, TensoRF [2] also pro-
poses vector-matrix (VM) decomposition, which factorizes
a 3D tensor as the summation of vector-matrix bases. Each
basis is the outer product of a matrix along a plane, e.g., the
XY plane, and a vector along an orthogonal direction, e.g.,
the Z axis. For comparison, we also explore to replace our
tri-vector representation with the vector-matrix representa-
tion for each local tensor. Tab. 1 shows that the single-scale
tri-vector cloud can outperform the vector-matrix cloud rep-
resentation with less model capacity.

It is not a surprise that our tri-vector cloud representa-
tion achieves more compactness. It applies more compres-
sion by factorizing each component of a 3D tensor, with
a space complexity of O(IJK), into three vectors, with a
space complexity of O(I + J + K). On the other hand,
vector-matrix cloud representation factorizes it into three
vectors and three matrices, which have a space complex-
ity of O(IJ + JK + IK). Even if we reduce the number
of components, the vector-matrix clouds still require more
space than our tri-vector representations.

In terms of quality, since our method exploits the spa-
tial sparsity of natural scenes, we only need to factorize
each local space independently instead of the entire scene
together. The more compact tri-vector representation can
benefit from the appearance coherence in local space and

result in better performance. In TensoRF [2], since the en-
tire space is factorized all at once, the radiance information
is, in general, less coherent across locations and the CP de-
composition will lead to a shortage of rank.

2. Ablation Studies on Multi-scale Models
In Tab.1, we also compare our multi-scale tri-vector ra-

diance fields with the single-scale strategy. In our default
model, we have three scales, composed of tensors with
lengths 0.15, 0.3, and 0.6, respectively. Similar to the
findings in iNGP [9], our multi-scale models provide more
smoothness and lead to a better rendering quality than their
single-scale counterparts. The multi-scale model with 24
components (row 1) can already outperform the single-scale
model (row 2), which has more parameters.

3. Ablation Studies on the Number of Tensor
Components

We conduct experiments on the NeRF Synthetic
dataset [8] to show the relationship between rendering per-
formance and the number of tensor components. In Tab.2,
we compare our multi-scale models with 12, 24, 48, and 96
appearance components, respectively. In general, more ten-
sor components will lead to better performance. We also ob-
serve that the benefit of adding more components becomes
marginal when the number reaches 48. We speculate that
it is harder to learn high-frequency details even though the
model’s capacity can hold high-rank information. Improve-
ment in this aspect can be a promising future direction.

4. Ablation Studies on Initial Geometry
We emphasize that our superior quality stems from our

novel scene representation rather than the initial geome-
try. The initial geometry is simply acquired from a low-
res RGBA volume reconstruction, which is coarse and only
used to roughly prune empty space.

We show in Fig. 1 that our approach performs robustly
with various choices of these geometry structures and con-
sistently achieves high PSNRs, even with a much worse
early-stopped RGBA reconstruction. This showcases the
key to our superior quality is our Strivec model itself.
In particular, the self-bootstrap geometry is generated



PSNR↑ SSIM↑ LPIPSV gg ↓ LPIPSAlex ↓ # Param.(M)↓
Ours-12 32.94 0.961 0.049 0.028 4.87
Ours-24 33.24 0.963 0.046 0.026 7.07
Ours-48 33.55 0.965 0.044 0.025 13.52
Ours-96 33.59 0.965 0.043 0.024 21.01

Table 2: Ablation study on the number of tensor components. We use the same setting as our default model but only change
the number of components in each variant. These variants are evaluated on the NeRF Synthetic dataset [8].

purely from our own model with 8 coarse tri-vectors with-
out existing modules in previous work. Moreover, we can
also further prune unoccupied tensors during training but
we find this leads to similar quality (0.03db difference) and
unnecessary extra (+22%) training time. We instead choose
to use one single initial geometry to prune empty space in
implementation for its simplicity and efficiency.

MVS Self-Bootstrap RGBA RGBA (Early Stop)

36.56 36.54 36.54 36.51PSNR

Init Method

Figure 1: Our quality with initial geometry by different
methods.

5. Speed v.s. Performance
Though speed is not our focus, here, if we reduce the

number of scales from 3 to 2 and TopK from 4 to 2 (i.e.,
Multi(0.6, 0.3) with TopK=2), and Strivec becomes faster
than CP and close to VM, while still having competitive
quality (see Ours-48(fast) in Tab.3). The fewer ranks of our
tensor and the less number of TopK to be find for each sam-
ple point along a ray lead to less computation, and thus, ac-
celeration. To conclude, Strivec is capable to improve qual-
ity, training time and compactness all together with proper
hyper-parameters.

Train(s)↓ Inference(s/it)↓ #Params.(M)↓ PSNR↑
TensoRF-CP 1914 2.01 0.98 31.56
TensoRF-VM 915 1.60 17.95 33.14
Ours-48(fast) 959 1.67 6.20 33.09

Table 3: Comparison on NeRF Synthetic dataset [8]. We
compare the average training time (s), inference time (s/it),
the number of parameters (M) and PSNR.

6. Per-scene Breakdown Results of the NeRF
Synthetic Dataset

We show the per-scene detailed quantitative results of
the comparisons on the NeRF Synthetic dataset [8] in Tab.
6 and qualitative comparisons in our video. With com-
pact model capacity, our method outperforms state-of-the-
art methods [8, 9, 11, 2] and achieves the best PSNRs, and
LPIPSs in most of the scenes. We report two versions of

garden room Model Size(avg)
DVGO 24.32 28.35 5.1GB
Ours-48 24.13 28.11 12.6MB

Table 4: Results on the Mip-NeRF 360 dataset.

iNGP [9]. Specifically, iNGP-dark100k is reported in the
original paper. According to issue #745 in iNGP’s official
repo, the method uses a random color background in train-
ing and dark background in testing. The number of itera-
tions, 100k, is referenced to its initial code base release. We
also refer to the results reported in [3] as iNGP-white30k,
since the authors use a white background in both training
and testing for 30k iterations, which has the same setting
as ours and many other compared methods. Please refer to
issue #745 and #1266 in iNGP’s official repo for more de-
tails.

7. The Tanks and Temples Dataset
We show the qualitative comparison between our Strivec

and TensoRF-VM [2] on the Tanks and Temples dataset [5]
in Fig.2. Similar to the procedures on the NeRF Synthetic
dataset, we build the coarse scene geometry within 30 sec-
onds to place our local tensors. The quantitative results are
reported in Tab.5.

8. Mip-NeRF360 Dataset
We evaluate our method on two scenes (one indoor scene

and one outdoor scene) of Mip-NeRF360 dataset [1]. Note
that we only use the scene warping scheme the same as
DVGO [10] and Mip-NeRF360 [1] and keeping other com-
ponents (i.e., positional encoding, point sampling, etc.) the
same as TensoRF [2]. The qualitative and quantitative re-
sults are shown in Fig. and Tab. , respectively. Here, we use
only two scales in implementation to show our compactness
and scalability.

https://github.com/NVlabs/instant-ngp/discussions/745
https://github.com/NVlabs/instant-ngp/discussions/745
https://github.com/NVlabs/instant-ngp/issues/1266


Tanks & Tamples
Ignatius Truck Barn Caterpillar Family Mean

PSNR ↑
NV [7] 26.54 21.71 20.82 20.71 28.72 23.70

NeRF [8] 25.43 25.36 24.05 23.75 30.29 25.78
NSVF [6] 27.91 26.92 27.16 26.44 33.58 28.40

TensoRF-CP[2] 27.86 26.25 26.74 24.73 32.39 27.59
TensoRF-VM[2] 28.34 27.14 27.22 26.19 33.92 28.56

Ours-48 28.39 27.32 28.09 26.58 33.13 28.70
SSIM ↑

NV [7] 0.992 0.793 0.721 0.819 0.916 0.848
NeRF [8] 0.920 0.860 0.750 0.860 0.932 0.864
NSVF [6] 0.930 0.895 0.823 0.900 0.954 0.900

TensoRF-CP[2] 0.934 0.885 0.839 0.879 0.948 0.897
TensoRF-VM[2] 0.948 0.914 0.864 0.912 0.965 0.920

Ours-48 0.948 0.915 0.884 0.917 0.957 0.924
LPIPSAlex ↓

NV [7] 0.117 0.312 0.479 0.280 0.111 0.260
NeRF [8] 0.111 0.192 0.395 0.196 0.098 0.198
NSVF [6] 0.106 0.148 0.307 0.141 0.063 0.153

TensoRF-CP[2] 0.089 0.154 0.237 0.176 0.063 0.144
TensoRF-VM[2] 0.081 0.129 0.217 0.139 0.057 0.125

Ours-48 0.083 0.123 0.167 0.125 0.065 0.113
LPIPSV gg ↓

TensoRF-CP[2] 0.106 0.202 0.283 0.227 0.088 0.181
TensoRF-VM[2] 0.078 0.145 0.252 0.159 0.064 0.140

Ours-48 0.083 0.150 0.216 0.154 0.078 0.136

Table 5: Quantity comparison on five scenes in the Tanks and Temples dataset [5] selected in NSVF [6]. NV, NeRF, and
NSVF have not reported their LPIPSV gg



NeRF Synthetic
Chair Drums Lego Mic Materials Ship Hotdog Ficus

PSNR↑
NeRF [8] 33.00 25.01 32.54 32.91 29.62 28.65 36.18 30.13
NSVF [6] 33.19 25.18 32.54 34.27 32.68 27.93 37.14 31.23
Point-NeRF20k [11] 32.50 25.03 32.40 32.31 28.11 28.13 34.53 32.67
Point-NeRF200k [11] 35.40 26.06 35.04 35.95 29.61 30.97 37.30 36.13
iNGP-dark100k [9] 35.00 26.02 36.39 36.22 29.78 31.10 37.40 33.51
iNGP-white30k [9, 4] 35.42 24.24 34.82 35.98 28.99 30.72 37.45 32.09
TensoRF-CP [2]-38430k 33.60 25.17 34.05 33.77 30.10 28.84 36.24 30.72
TensoRF-VM [2]-19230k 35.76 26.01 36.46 34.61 30.12 30.77 37.41 33.99
Ours-1230k 35.21 25.96 35.60 35.29 29.54 30.64 37.03 34.21
Ours-2430k 35.60 26.16 36.05 35.81 29.79 30.89 37.24 34.37
Ours-4830k 35.88 26.20 36.52 36.65 29.90 31.13 37.63 34.47

SSIM↑
NeRF 0.967 0.925 0.961 0.980 0.949 0.856 0.974 0.964
NSVF 0.968 0.931 0.960 0.987 0.973 0.854 0.980 0.973
Point-NeRF20k 0.981 0.944 0.980 0.986 0.959 0.916 0.983 0.986
Point-NeRF200k 0.991 0.954 0.988 0.994 0.971 0.942 0.991 0.993
iNGP-white30k 0.985 0.924 0.979 0.990 0.945 0.892 0.982 0.977
TensoRF-CP-38430k 0.973 0.921 0.971 0.983 0.950 0.857 0.975 0.965
TensoRF-VM-19230k 0.985 0.937 0.983 0.988 0.952 0.895 0.982 0.982
Ours-1230k 0.983 0.937 0.980 0.989 0.948 0.888 0.981 0.983
Ours-2430k 0.984 0.940 0.982 0.990 0.952 0.893 0.982 0.984
Ours-4830k 0.985 0.940 0.984 0.992 0.953 0.899 0.983 0.985

LPIPSV gg ↓
NeRF 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044
Point-NeRF20k 0.051 0.103 0.054 0.039 0.102 0.181 0.074 0.043
Point-NeRF200k 0.023 0.078 0.024 0.014 0.072 0.124 0.037 0.022
iNGP-white30k 0.022 0.092 0.025 0.017 0.069 0.137 0.037 0.026
TensoRF-CP-38430k 0.044 0.114 0.038 0.035 0.068 0.196 0.052 0.058
TensoRF-VM-19230k 0.022 0.073 0.018 0.015 0.058 0.138 0.032 0.022
Ours-1230k 0.025 0.070 0.022 0.015 0.062 0.145 0.033 0.022
Ours-2430k 0.022 0.067 0.020 0.013 0.058 0.141 0.031 0.021
Ours-4830k 0.021 0.064 0.017 0.011 0.056 0.138 0.029 0.018

LPIPSAlex ↓
NSVF 0.043 0.069 0.029 0.010 0.021 0.162 0.025 0.017
Point-NeRF20k 0.027 0.057 0.022 0.024 0.076 0.127 0.044 0.022
Point-NeRF200k 0.010 0.055 0.011 0.007 0.041 0.070 0.016 0.009
iNGP-white30k 0.022 0.093 0.025 0.017 0.069 0.140 0.037 0.026
TensoRF-CP-38430k 0.022 0.069 0.014 0.018 0.031 0.130 0.024 0.024
TensoRF-VM-19230k 0.010 0.051 0.007 0.009 0.026 0.085 0.013 0.012
Ours-1230k 0.011 0.051 0.009 0.007 0.027 0.092 0.015 0.013
Ours-2430k 0.010 0.049 0.008 0.006 0.024 0.087 0.014 0.012
Ours-4830k 0.009 0.048 0.007 0.005 0.023 0.086 0.012 0.011

Table 6: Detailed breakdown of quantitative metrics on individual scenes in the NeRF Synthetic [8] for our method and
baselines. All scores are averaged over the testing images. The subscripts are the number of iterations of the models. NeRF
only [8] reports the LPIPSV gg [12] while NSVF only reports LPIPSAlex.



Figure 2: Qualitative comparison on the Tanks and Temples dataset. Top: ours. Bottom: TensoRF-VM.

Figure 3: Qualitative results on Mip-NeRF360 dataset.

Figure 4: Visualization of local tensors (single scale) on initial geometry.
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