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A. Implementation Details
We list more details of the implementation in this sec-

tion. To train the base model on CIFAR-10, we follow the
standard training PyTorch training examples. The models
are trained for 200 epochs, and the learning rates are 0.1,
0.01, and 0.001 for the first 100 epochs, 100 to 150 epochs,
and 150 to 200 epochs. We select SGD as the optimizer
with a momentum of 0.9 and weight decay of 10−4. After
pruning, we finetune the model for 160 epochs using similar
optimization hyperparameters. The learning rates for fine-
tuning are 0.1, 0.01, and 0.001 for the first 80 epochs, 80 to
120 epochs, and 120 to 160 epochs.

For ResNet models on ImageNet, we train the model for
90 epochs following the standard PyTorch ImageNet train-
ing script. The learning rates are 0.1, 0.01, and 0.001 for the
first 30 epochs, 30 to 60 epochs, and 60 to 90 epochs. Still,
SGD is selected as the optimizer with momentum of 0.9
and weight decay of 10−4. For MobileNet-V2, we train the
model for 150 epochs with the cos-annealing learning rate
and a start learning rate of 0.045, and weight decay 4×10−5

as mentioned in their original paper [2]. For each model on
ImageNet, we fine-tune them for 100 epochs. The learning
rate schedule and the start learning rate are the same as the
training of the based model. Except that when fine-tuning
ResNets, we set the learning rate to 0.0001 for 90 to 100
epochs. We also list p and Estart in Tab. 1. As mentioned in
the paper, we set Estart to around 20% of the total training
time.

As we discussed in the paper, AGN is composed of dense
layers and GRUs, and now we present the architecture of
AGN in Tab. 2. In Tab. 2, z ∈ ℜL×32 is the input to the
AGN, and z is initially sampled from a normal distribution,
and it is then fixed during training. Outputs ol are continu-
ous values. We use the following equation to covert it into
vl:

vl = round(sigmoid((ol + g + b)/τ)), (1)

Architecture Dataset p Estart

ResNet-56 CIFAR-10 0.48 40
MobileNet-V2 0.54 40

ResNet-34

ImageNet

0.54 18
ResNet-50 0.37 18

ResNet-101 0.41 18
MobileNet-V2 0.65 30

Table 1: Choices of p and Estart for different models.

where sigmoid(·) is the sigmoid function, round(·) is the
rounding function, g is sampled from Gumbel distribution
(g ∼ Gumbel(0, 1)), b is a constant value to make sure
pruning starts from the whole model, and τ is the tempera-
ture hyper-parameter. As shown in Eq. 1, straight-through
Gumbel-Sigmoid [1] are used to produce the final binary
vector v. The function of AGN can also be understood as
translating z into the final architecture vector v. For all ex-
periments, we set τ = 0.4 and b = 3.0.

Table 2: The architecture of AGN.

Input z

GRU(32,64)→ LayerNorm→ GeLU

Densel(64, Cl)→Outputs ol, l = 1, · · · , L

Note that the additional training costs of our method are
trivial compared to the original training process, mainly
because we only train AGN in a small sub-dataset of the
whole dataset. Take MobileNet-V2 as an example, its aver-
age model training time is 976 seconds per epoch, and the
average AGN training time is 95 seconds per epoch. The
overhead is around 10% of the original training time.



B. Regularization with Blocks
Recent CNN designs often use a block as a building

block. In the paper, we do not explicitly talk about this setup
to simplify notations. Usually, we group vl based on the
definition of blocks, and L is the total number of unique vl,
and it could be different from the actual number of layers.
To avoid conflicts, we rewrite vl as vk, and k = 1, · · · ,K,
and K is the total number of unique vk (a single vk can be
used for multiple layers along different dimension). Let us
use the basic block from ResNets as an example. With this
setting, Rw can be written as:

Rw(W) =

B∑
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∑
i∈Sk
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(2)
where k is the corresponding index of vk for the jth block,
and B is the total number of blocks. For the upper layer
in the jth block, the regularization is applied on the output
dimension, and the regularization is applied on the input
dimension for the lower layer in the jth block. The formu-
lation of Eq. 2 can be easily extended to other block types,
such as the bottleneck block in ResNets and the inverted
residual block in MobileNet-V2.

C. Different Choices of γ
In this section, we want to discuss the impact of γ and

how it affects the performance of the whole model. We plot
the related results in Fig. 1. From the figure, we can see
that when we increase γ, we can get a better sub-network
during the training process. However, it also negatively af-
fects the full model performance, as shown in Fig. 1b. The
full model accuracy provides the baseline before pruning.
∆-Acc often increases when we have a better sub-network,
but if the baseline accuracy is too low, the final fine-tuned
accuracy will also be worse. On CIFAR-10, this happens
when we use γ ≥ 1 × 10−3 (a better ∆-Acc but a worse
final accuracy). On the ImageNet dataset, we also find that
when γ = 5× 10−4, we can get a similar baseline accuracy
with better sub-network accuracy. We can probably use a
larger γ to get better ∆ Top-1 accuracy, but it will create
weaker baselines, which is not a good practice for fair com-
parisons.

D. Stability of Sub-network Architectures
In our paper, we apply soft regularization when train-

ing model weights. One problem is that if the sub-network
architecture changes frequently, then most weights will be
penalized, which brings a trivial difference between penal-
izing all weights. To investigate this problem, we plot the
hamming distance between the sub-network architecture of
two consecutive epochs in Fig. 2. We can see that the ham-
ming distance will be smaller than 0.05 after around 10
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Figure 1: (a) The sub-network performance during train-
ing with different γ. (b) Performance of the whole model
given γ. All experiments are conducted on CIFAR-10 with
ResNet-56.

Figure 2: Hamming Distance between sub-network archi-
tecture during the training process. This experiment is con-
ducted on CIFAR-10 with ResNet-56.

epochs, and the hamming distance will continuously de-
crease after 20 epochs. This observation suggests that the
sub-network architecture becomes more and more stable af-
ter 20 epochs. Even if some weights are wrongly penalized
at the beginning, they still have enough time to recover their
magnitudes.
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