Supplementary Materials: Towards Better Robustness against Common Corruptions for Unsupervised Domain Adaptation

Zhiqiang Gao^{*1,2}, Kaizhu Huang^{†1}, Rui Zhang², Dawei Liu¹, and Jieming Ma²

 ¹ Xi'an Jiatong-Liverpool University, Suzhou, China {Zhiqiang.Gao, Rui.Zhang02, Jieming.Ma}@xjtlu.edu.cn
² Duke Kunshan University, Kunshan, China {Zhiqiang.Gao, Kaizhu.Huang, Dawei.Liu}@dukekunshan.edu.cn

1. Dataset

Office-31 [3] is a widely used dataset for evaluating visual domain adaptation algorithms. It comprises 4, 652 images and 31 categories from three distinct domains: Amazon (A), Webcam (W), and DSLR (D). We assess the performance of various methods using the following six transfer tasks: $A \rightarrow W$, $D \rightarrow W$, $W \rightarrow D$, $A \rightarrow D$, $D \rightarrow A$, and $W \rightarrow A$.

Office-Home [4] is a challenging dataset consisting of 15,500 images across 65 classes from both office and home domains. This dataset spans four highly dissimilar domains: Artistic images (A), Clip Art (C), Product images (P), and Real-World images (R). Our evaluation encompasses all possible transfer tasks.

VisDa-2017 [2] is a large-scale dataset tailored for visual domain adaptation tasks. It encompasses a total of 280K images distributed across 12 classes within training, validation, and test sets. In accordance with prior studies [1, 5], we utilize the training dataset, which comprises 152, 397 synthetic images, as the source domain. The validation dataset is comprised of 55, 388 real images and serves as the target domain. The performance assessment focuses on evaluating the effectiveness of a method in transferring knowledge learned from synthetic data to a real image dataset.

2. Sensitivity Analysis

Fig. 1(a) and (b) show the sensitivity analysis for the balancing parameters and adversarial data radius respectively. Three robust models are trained by deploying our DDAR method on UDA methods, i.e. MCC, MCC+CDAN, MCC+MDD, where the training and evaluation are conducted on the A \rightarrow D task on the Office-31 dataset. In Fig. 1(a), the radius ϵ for generating adversarial data is set as 0.5. Then, we constrain the $\lambda_1 + \lambda_2 = 1$, where λ_1 and λ_2 are coefficients of supervised learning loss of source domain and adversarial regularization loss of target domain in Eq. 10 in the main paper. As such, the (1.0, 0.0) represents training a standard model without using DDAR, which presents poor robustness against common corruption (RaCC). Once DDAR is involved in training, RaCCs are improved significantly, and the highest performances are obtained at (0.6, 0.4). In Fig. 1(b), the λ_1 and λ_2 are set as 0.6 and 0.4 respectively. We evaluate the robust models trained by using adversarial data generated with different radius ϵ . The $\epsilon = 0.0$ means no adversarial perturbations appear on data, where the model is trained by only using data augmented by VQGAN. As can be observed, the performance for RaCC increases with ϵ , and the highest performances are attained when ϵ equals to 0.4 or 0.5.

^{*}Majority of the work was done at Duke Kunshan University.

[†]Corresponding author.

Figure 1. Sensitivity analysis for the (a) balancing parameters and (b) adversarial data radius. All robust models are trained and evaluated on the $A \rightarrow D$ task on the Office-31 dataset.

3. Detail Results

The detailed results of Table 1-6 in the main paper are shown in Table 1-8 respectively.

Method	A-D	A-W	D-A	D-W	W-A	W-D	Avg. (\downarrow)
CDAN+TN	60.3	59.6	64.1	83.5	64.7	120.2	75.4
+ Augmix	46	65.2	66	59.9	67.9	64.3	61.6
+ DDG	48.9	46.9	62.4	69.7	60.1	70.9	59.8
DCAN	42.3	40	50.3	45.2	60.1	46.6	47.4
+ Augmix	40.5	32.4	53	48.1	59.8	54.6	48.1
+ DDG	36.9	28.6	46.6	35.9	55	44.5	41.3
MCC+DDAR	27.2	28.5	49.9	21.2	53.7	23.1	33.9
MCC+CDAN+DDAR	26.8	26.3	44.8	19.0	46.7	19.4	30.5
MCC+MDD+DDAR	30.5	31.0	45.3	23.6	50.3	23.4	34.0

Table 1. Detailed results of Table 1 in main paper. mCE (\downarrow) on Office-31 dataset under common corruptions (ResNet-50).

Method	A-C	A-P	A-R	C-A	C-P	C-R	P-A	P-C	P-R	R-A	R-C	R-P	Avg. (\downarrow)
CDAN+TN	69.7	62.2	59.2	65.4	58.7	57.6	65.5	70.9	55.0	63.2	70.4	60.9	63.2
+ Augmix	69.3	52.8	56.0	73.7	56.6	61.3	72.2	71.4	55.3	62.4	61.4	52.6	62.1
+ DDG	59.8	52.2	48.0	66.0	51.9	56.2	63.6	63.6	48.8	57.8	64.4	47.9	56.7
DCAN	61.4	51.0	47.9	58.6	58.0	52.0	61.1	66.2	53.7	63.0	64.0	58.4	57.9
+ Augmix	63.2	49.3	46.0	57.4	57.3	53.8	58.9	65.3	48.5	59.2	64.2	52.5	56.3
+ DDG	58.3	48.0	44.6	55.2	51.6	47.5	55.1	62.2	49.4	57.7	59.9	52.6	53.5
MCC+DDAR	56.0	44.7	43.2	61.6	49.1	49.1	59.8	59.5	45.2	51.1	50.8	40.5	50.9
MCC+CDAN+DDAR	54.7	44.6	43.9	55.7	49.1	47.8	57.6	56.3	45.0	51.6	50.5	41.6	49.9
MCC+MDD+DDAR	69.5	48.7	46.3	68.2	50.7	49.8	58.5	67.2	44.7	49.6	53.3	42.6	54.1

Table 2. Detailed results of Table 1 in main paper. mCE (\downarrow) on Office-Home dataset under common corruptions (ResNet-50).

Method	Dataset	A-D	A-W	D-A	D-W	W-A	W-D	Avg.
MCC	Acc	91.8	95.0	73.7	98.1	72.1	99.6	88.4
WICC	mCE	47.7	46.1	57.8	36.6	60.2	34.9	47.2
+DDAR	Acc	93.0	89.7	71.0	98.5	69.2	99.8	86.8
	mCE	30.5	31.0	45.3	23.6	50.3	23.4	33.9
MCC+CDAN	Acc	94.0	94.8	75.5	98.4	75.0	100.0	89.6
	mCE	45.7	47.1	55.2	32.4	53.1	28.6	43.7
	Acc	93.0	91.7	75.5	99.0	74.5	99.8	88.9
+DDAK	mCE	26.8	26.3	44.8	19.0	46.7	19.4	30.5
MCC+MDD	Acc	93.8	94.2	74.6	98.6	74.7	99.8	89.3
MCC+MDD	mCE	46.6	49.8	55.7	36.2	56.4	36.0	46.8
+DDAR	Acc	93.6	92.5	75.4	98.7	71.3	100.0	88.6
	mCE	30.5	31.0	45.3	23.6	50.3	23.4	34.0

Table 3. Detailed results of Table 2 in main paper. Standard accuracy (Acc) and **mCE** (\downarrow) on Office-31 dataset under common corruptions (ResNet-50).

Method	Dataset	A-C	A-P	A-R	C-A	C-P	C-R	P-A	P-C	P-R	R-A	R-C	R-P	Avg.
MCC	Acc	57.2	77.7	83.3	64.9	76.6	78.2	65.1	54.3	82.5	73.3	61.8	86.7	71.8
	mCE	62.1	54.3	49.2	61.9	54.1	53.6	66.0	69.7	52.9	61.0	60.8	49.0	57.9
+DDAR	Acc	56.4	76.7	80.7	57.4	72.2	74.7	62.0	55.3	80.6	71.7	63.2	84.2	69.6
	mCE	56.0	44.7	43.2	61.6	49.1	49.1	59.8	59.5	45.2	51.1	50.8	40.5	50.9
	Acc	58.9	79.7	82.5	65.3	78.8	78.5	65.5	55.8	81.8	74.3	62.4	85.6	72.4
MCC+CDAN	mCE	60.5	51.8	49.4	61.6	51.5	49.4	63.2	65.0	51.3	58.9	58.7	47.9	55.8
	Acc	58.1	77.5	80.3	65.1	73.9	76.0	65.2	58.5	81.1	72.8	64.1	84.2	71.4
+DDAK	mCE	54.7	44.6	43.9	55.7	49.1	47.8	57.6	56.3	45.0	51.6	50.5	41.6	49.9
MCC+MDD	Acc	58.2	78.0	82.1	65.8	75.8	75.6	65.2	55.9	81.0	73.6	62.2	85.4	71.6
MCC+MDD	mCE	62.2	54.5	53.1	63.0	58.9	57.1	65.5	69.5	55.3	62.3	61.8	51.6	59.6
	Acc	43.3	74.7	79.6	51.4	72.5	73.2	63.6	48.8	81.7	73.8	62.7	83.6	67.4
+DDAR	mCE	69.5	48.7	46.3	68.2	50.7	49.8	58.5	67.2	44.7	49.6	53.3	42.6	54.1

Table 4. Detailed results of Table 2 in main paper. Standard accuracy (Acc) and mCE (\downarrow) on Office-Home dataset under common corruptions (ResNet-50).

Method	A-D	A-W	D-A	D-W	W-A	W-D	Avg.(↓)
CDAN+MCC	45.7	47.1	55.2	32.4	53.1	28.6	43.7
CDAN+MCC+DDAR	26.8	26.3	44.8	19.0	46.7	19.4	30.5
w/o random start	27.4	27.6	44.6	19.9	51.1	19.5	31.7
w/o ID	35.5	35.9	46.0	25.1	49.1	29.0	36.8
w/o adversarial perturbation	30.2	31.3	48.8	21.5	50.4	20.4	33.8
	•	CE (1.5		6.0.00	0114	(D N

Table 5. Detailed results of Table 3 in main paper. mCE (\downarrow) on corruptions of Office-31 dataset (ResNet-50)

Method	A-D	A-W	D-A	D-W	W-A	W-D	Avg.(↓)
CDAN+MCC+Tent (epoch 10)	16.6	27.7	86.1	19.7	84.9	6.2	40.2
+DDAR	10.1	19.6	69.9	11.6	82.3	3.0	32.7
CDAN+MCC+Tent (epoch 1)	16.3	23.4	63.1	13.6	61.2	5.2	30.5
+DDAR	9.6	14.3	59.1	6.1	61.2	1.9	25.4
CDAN+MCC+AugMix+KL	43.4	43.8	50.3	29.2	50.8	28.9	41.1
CDAN+MCC+AugMix+W	25.1	27.7	38.4	17.5	40.9	15.2	27.5
+DDAR	23.9	24.9	40.0	14.6	42.9	14.8	26.8
CDAN+MCC+DeepAugment+KL	41.3	40.0	45.2	29.6	45.0	29.2	38.4
CDAN+MCC+DeepAugment+W	22.9	22.9	39.8	14.9	40.3	15.1	26.0
+DDAR	19.4	20.8	36.9	12.8	37.0	12.5	23.2

Table 6. Detailed results of Table 4 in main paper. mCE (\$\$) on corruptions of Office-31 dataset (ResNet-50)

Method	Adv.	Reg.	λ_2	A-D	A-W	D-A	D-W	W-A	W-D	Avg. (↓)
VAT	KL	KL	0.4	41.1	42.6	47.7	30.1	51.8	29.3	40.4
TRADES-1	KL	KL	1	41.1	39.3	48.2	28.1	52.2	28.9	39.6
TRADES-6	KL	KL	6	40.9	46.9	50.7	27.3	53.1	27.2	41.0
AFD	CE	CDAN	1	37.4	40.7	48.1	25.2	47.1	25.2	37.3
D+KL	D	KL	6	38.5	45.9	48.3	28.6	50.3	26.6	39.7
D+CDAN	D	CDAN	1	36.1	41.0	47.5	26.9	46.5	24.8	37.1
CE+W	CE	W	0.4	26.5	28.0	45.7	21.7	46.3	20.1	31.4
KL+W	KL	W	0.4	26.2	27.1	45.5	20.6	46.7	20.0	31.0
DAAR	D	W	0.4	26.8	26.3	44.8	19.0	46.7	19.4	30.5

Table 7. Detailed results of Table 5 in main paper. **mCE** (\downarrow) on Office-31 dataset under common corruptions (ResNet-50).

Method	Dataset	A-D	A-W	D-A	D-W	W-A	W-D	Avg.			
Pixel-Space Perturbations											
VAT	Acc	91.4	93.5	74.0	98.5	72.1	99.6	88.2			
	mCE	41.9	40.9	50.8	28.7	52.2	30.4	40.8			
AFD	Acc	92.8	92.5	74.1	98.5	72.5	99.8	88.4			
	mCE	40.0	41.8	47.2	28.4	49.1	27.8	39.0			
	Acc	93.8	91.8	76.1	99.0	73.9	99.8	89.1			
DDAK	mCE	35.5	35.9	46.0	25.1	49.1	29.0	36.8			
		Iı	nage Di	scretiza	tion						
VAT	Acc	92.0	93.0	76.3	98.1	74.5	99.6	88.9			
VAI	mCE	41.1	42.6	47.7	30.1	51.8	29.3	40.4			
AED	Acc	89.8	89.7	75.3	97.5	73.3	99.4	87.5			
AFD	mCE	37.4	40.7	48.1	25.2	47.1	25.2	37.3			
	Acc	93.0	91.7	75.5	99.0	74.5	99.8	88.9			
DDAK	mCE	26.8	26.3	44.8	19.0	46.7	19.4	30.5			

Table 8. Detailed results of Table 6 in main paper. Standard accuracy (Acc) and mCE (\downarrow) for adversarial regularization methods based on pixel-space perturbations and image discretization on the Office-31 dataset (ResNet-50).

References

- [1] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial domain adaptation. In *Advances in neural information processing systems*, pages 1640–1650, 2018. 1
- [2] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda: The visual domain adaptation challenge. CoRR, abs/1710.06924, 2017. 1
- [3] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV, volume 6314 of Lecture Notes in Computer Science, pages 213–226. Springer, 2010. 1
- [4] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 5385–5394. IEEE Computer Society, 2017. 1
- [5] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for domain adaptation. In *Interna*tional Conference on Machine Learning, pages 7404–7413, 2019.