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1. Dataset
Office-31 [3] is a widely used dataset for evaluating visual domain adaptation algorithms. It comprises 4, 652 images and

31 categories from three distinct domains: Amazon (A), Webcam (W), and DSLR (D). We assess the performance of various
methods using the following six transfer tasks: A→W, D→W, W→D, A→D, D→A, and W→A.

Office-Home [4] is a challenging dataset consisting of 15, 500 images across 65 classes from both office and home
domains. This dataset spans four highly dissimilar domains: Artistic images (A), Clip Art (C), Product images (P), and
Real-World images (R). Our evaluation encompasses all possible transfer tasks.

VisDa-2017 [2] is a large-scale dataset tailored for visual domain adaptation tasks. It encompasses a total of 280K images
distributed across 12 classes within training, validation, and test sets. In accordance with prior studies [1, 5], we utilize the
training dataset, which comprises 152, 397 synthetic images, as the source domain. The validation dataset is comprised of
55, 388 real images and serves as the target domain. The performance assessment focuses on evaluating the effectiveness of
a method in transferring knowledge learned from synthetic data to a real image dataset.

2. Sensitivity Analysis
Fig. 1(a) and (b) show the sensitivity analysis for the balancing parameters and adversarial data radius respectively. Three

robust models are trained by deploying our DDAR method on UDA methods, i.e. MCC, MCC+CDAN, MCC+MDD, where
the training and evaluation are conducted on the A→D task on the Office-31 dataset. In Fig. 1(a), the radius ϵ for gener-
ating adversarial data is set as 0.5. Then, we constrain the λ1 + λ2 = 1, where λ1 and λ2 are coefficients of supervised
learning loss of source domain and adversarial regularization loss of target domain in Eq. 10 in the main paper. As such,
the (1.0, 0.0) represents training a standard model without using DDAR, which presents poor robustness against common
corruption (RaCC). Once DDAR is involved in training, RaCCs are improved significantly, and the highest performances
are obtained at (0.6, 0.4). In Fig. 1(b), the λ1 and λ2 are set as 0.6 and 0.4 respectively. We evaluate the robust models
trained by using adversarial data generated with different radius ϵ. The ϵ = 0.0 means no adversarial perturbations appear on
data, where the model is trained by only using data augmented by VQGAN. As can be observed, the performance for RaCC
increases with ϵ, and the highest performances are attained when ϵ equals to 0.4 or 0.5.

*Majority of the work was done at Duke Kunshan University.
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Figure 1. Sensitivity analysis for the (a) balancing parameters and (b) adversarial data radius. All robust models are trained and evaluated
on the A→D task on the Office-31 dataset.

3. Detail Results
The detailed results of Table 1-6 in the main paper are shown in Table 1-8 respectively.

Method A-D A-W D-A D-W W-A W-D Avg. (↓)
CDAN+TN 60.3 59.6 64.1 83.5 64.7 120.2 75.4
+ Augmix 46 65.2 66 59.9 67.9 64.3 61.6
+ DDG 48.9 46.9 62.4 69.7 60.1 70.9 59.8
DCAN 42.3 40 50.3 45.2 60.1 46.6 47.4
+ Augmix 40.5 32.4 53 48.1 59.8 54.6 48.1
+ DDG 36.9 28.6 46.6 35.9 55 44.5 41.3
MCC+DDAR 27.2 28.5 49.9 21.2 53.7 23.1 33.9
MCC+CDAN+DDAR 26.8 26.3 44.8 19.0 46.7 19.4 30.5
MCC+MDD+DDAR 30.5 31.0 45.3 23.6 50.3 23.4 34.0

Table 1. Detailed results of Table 1 in main paper. mCE (↓) on Office-31 dataset under common corruptions (ResNet-50).

Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg. (↓)
CDAN+TN 69.7 62.2 59.2 65.4 58.7 57.6 65.5 70.9 55.0 63.2 70.4 60.9 63.2
+ Augmix 69.3 52.8 56.0 73.7 56.6 61.3 72.2 71.4 55.3 62.4 61.4 52.6 62.1
+ DDG 59.8 52.2 48.0 66.0 51.9 56.2 63.6 63.6 48.8 57.8 64.4 47.9 56.7
DCAN 61.4 51.0 47.9 58.6 58.0 52.0 61.1 66.2 53.7 63.0 64.0 58.4 57.9
+ Augmix 63.2 49.3 46.0 57.4 57.3 53.8 58.9 65.3 48.5 59.2 64.2 52.5 56.3
+ DDG 58.3 48.0 44.6 55.2 51.6 47.5 55.1 62.2 49.4 57.7 59.9 52.6 53.5
MCC+DDAR 56.0 44.7 43.2 61.6 49.1 49.1 59.8 59.5 45.2 51.1 50.8 40.5 50.9
MCC+CDAN+DDAR 54.7 44.6 43.9 55.7 49.1 47.8 57.6 56.3 45.0 51.6 50.5 41.6 49.9
MCC+MDD+DDAR 69.5 48.7 46.3 68.2 50.7 49.8 58.5 67.2 44.7 49.6 53.3 42.6 54.1

Table 2. Detailed results of Table 1 in main paper. mCE (↓) on Office-Home dataset under common corruptions (ResNet-50).
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Method Dataset A-D A-W D-A D-W W-A W-D Avg.

MCC Acc 91.8 95.0 73.7 98.1 72.1 99.6 88.4
mCE 47.7 46.1 57.8 36.6 60.2 34.9 47.2

+DDAR Acc 93.0 89.7 71.0 98.5 69.2 99.8 86.8
mCE 30.5 31.0 45.3 23.6 50.3 23.4 33.9

MCC+CDAN Acc 94.0 94.8 75.5 98.4 75.0 100.0 89.6
mCE 45.7 47.1 55.2 32.4 53.1 28.6 43.7

+DDAR Acc 93.0 91.7 75.5 99.0 74.5 99.8 88.9
mCE 26.8 26.3 44.8 19.0 46.7 19.4 30.5

MCC+MDD Acc 93.8 94.2 74.6 98.6 74.7 99.8 89.3
mCE 46.6 49.8 55.7 36.2 56.4 36.0 46.8

+DDAR Acc 93.6 92.5 75.4 98.7 71.3 100.0 88.6
mCE 30.5 31.0 45.3 23.6 50.3 23.4 34.0

Table 3. Detailed results of Table 2 in main paper. Standard accuracy (Acc) and mCE (↓) on Office-31 dataset under common corruptions
(ResNet-50).

Method Dataset A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg.

MCC Acc 57.2 77.7 83.3 64.9 76.6 78.2 65.1 54.3 82.5 73.3 61.8 86.7 71.8
mCE 62.1 54.3 49.2 61.9 54.1 53.6 66.0 69.7 52.9 61.0 60.8 49.0 57.9

+DDAR Acc 56.4 76.7 80.7 57.4 72.2 74.7 62.0 55.3 80.6 71.7 63.2 84.2 69.6
mCE 56.0 44.7 43.2 61.6 49.1 49.1 59.8 59.5 45.2 51.1 50.8 40.5 50.9

MCC+CDAN Acc 58.9 79.7 82.5 65.3 78.8 78.5 65.5 55.8 81.8 74.3 62.4 85.6 72.4
mCE 60.5 51.8 49.4 61.6 51.5 49.4 63.2 65.0 51.3 58.9 58.7 47.9 55.8

+DDAR Acc 58.1 77.5 80.3 65.1 73.9 76.0 65.2 58.5 81.1 72.8 64.1 84.2 71.4
mCE 54.7 44.6 43.9 55.7 49.1 47.8 57.6 56.3 45.0 51.6 50.5 41.6 49.9

MCC+MDD Acc 58.2 78.0 82.1 65.8 75.8 75.6 65.2 55.9 81.0 73.6 62.2 85.4 71.6
mCE 62.2 54.5 53.1 63.0 58.9 57.1 65.5 69.5 55.3 62.3 61.8 51.6 59.6

+DDAR Acc 43.3 74.7 79.6 51.4 72.5 73.2 63.6 48.8 81.7 73.8 62.7 83.6 67.4
mCE 69.5 48.7 46.3 68.2 50.7 49.8 58.5 67.2 44.7 49.6 53.3 42.6 54.1

Table 4. Detailed results of Table 2 in main paper. Standard accuracy (Acc) and mCE (↓) on Office-Home dataset under common
corruptions (ResNet-50).

Method A-D A-W D-A D-W W-A W-D Avg.(↓)
CDAN+MCC 45.7 47.1 55.2 32.4 53.1 28.6 43.7
CDAN+MCC+DDAR 26.8 26.3 44.8 19.0 46.7 19.4 30.5

w/o random start 27.4 27.6 44.6 19.9 51.1 19.5 31.7
w/o ID 35.5 35.9 46.0 25.1 49.1 29.0 36.8
w/o adversarial perturbation 30.2 31.3 48.8 21.5 50.4 20.4 33.8

Table 5. Detailed results of Table 3 in main paper. mCE (↓) on corruptions of Office-31 dataset (ResNet-50)

Method A-D A-W D-A D-W W-A W-D Avg.(↓)
CDAN+MCC+Tent (epoch 10) 16.6 27.7 86.1 19.7 84.9 6.2 40.2

+DDAR 10.1 19.6 69.9 11.6 82.3 3.0 32.7
CDAN+MCC+Tent (epoch 1) 16.3 23.4 63.1 13.6 61.2 5.2 30.5

+DDAR 9.6 14.3 59.1 6.1 61.2 1.9 25.4
CDAN+MCC+AugMix+KL 43.4 43.8 50.3 29.2 50.8 28.9 41.1
CDAN+MCC+AugMix+W 25.1 27.7 38.4 17.5 40.9 15.2 27.5

+DDAR 23.9 24.9 40.0 14.6 42.9 14.8 26.8
CDAN+MCC+DeepAugment+KL 41.3 40.0 45.2 29.6 45.0 29.2 38.4
CDAN+MCC+DeepAugment+W 22.9 22.9 39.8 14.9 40.3 15.1 26.0

+DDAR 19.4 20.8 36.9 12.8 37.0 12.5 23.2
Table 6. Detailed results of Table 4 in main paper. mCE (↓) on corruptions of Office-31 dataset (ResNet-50)
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Method Adv. Reg. λ2 A-D A-W D-A D-W W-A W-D Avg. (↓)
VAT KL KL 0.4 41.1 42.6 47.7 30.1 51.8 29.3 40.4
TRADES-1 KL KL 1 41.1 39.3 48.2 28.1 52.2 28.9 39.6
TRADES-6 KL KL 6 40.9 46.9 50.7 27.3 53.1 27.2 41.0
AFD CE CDAN 1 37.4 40.7 48.1 25.2 47.1 25.2 37.3
D+KL D KL 6 38.5 45.9 48.3 28.6 50.3 26.6 39.7
D+CDAN D CDAN 1 36.1 41.0 47.5 26.9 46.5 24.8 37.1
CE+W CE W 0.4 26.5 28.0 45.7 21.7 46.3 20.1 31.4
KL+W KL W 0.4 26.2 27.1 45.5 20.6 46.7 20.0 31.0
DAAR D W 0.4 26.8 26.3 44.8 19.0 46.7 19.4 30.5

Table 7. Detailed results of Table 5 in main paper. mCE (↓) on Office-31 dataset under common corruptions (ResNet-50).

Method Dataset A-D A-W D-A D-W W-A W-D Avg.
Pixel-Space Perturbations

VAT Acc 91.4 93.5 74.0 98.5 72.1 99.6 88.2
mCE 41.9 40.9 50.8 28.7 52.2 30.4 40.8

AFD Acc 92.8 92.5 74.1 98.5 72.5 99.8 88.4
mCE 40.0 41.8 47.2 28.4 49.1 27.8 39.0

DDAR Acc 93.8 91.8 76.1 99.0 73.9 99.8 89.1
mCE 35.5 35.9 46.0 25.1 49.1 29.0 36.8

Image Discretization

VAT Acc 92.0 93.0 76.3 98.1 74.5 99.6 88.9
mCE 41.1 42.6 47.7 30.1 51.8 29.3 40.4

AFD Acc 89.8 89.7 75.3 97.5 73.3 99.4 87.5
mCE 37.4 40.7 48.1 25.2 47.1 25.2 37.3

DDAR Acc 93.0 91.7 75.5 99.0 74.5 99.8 88.9
mCE 26.8 26.3 44.8 19.0 46.7 19.4 30.5

Table 8. Detailed results of Table 6 in main paper. Standard accuracy (Acc) and mCE (↓) for adversarial regularization methods based on
pixel-space perturbations and image discretization on the Office-31 dataset (ResNet-50).
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